PII: S0040-4020(96)00811-3 # **Total Synthesis of (+)-Tautomycin** Satoshi Shimizu, Sei-ichi Nakamura, Masahisa Nakada, and Masakatsu Shibasaki* Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113 Japan Abstract: A convergent stereocontrolled total synthesis of (+)-tautomycin (1), a specific inhibitor of protein serine/threonine phosphatases, has been achieved through an esterification of the C_1 - C_7 fragment A' 7 4 with the C_1 - C_{26} fragment B' 7 6 by a modified Yamaguchi method and an aldol reaction of the C_1 - C_{26} fragment C 5 with the C_1 - C_{16} fragment D 6 using LDA as key steps. The fragments 5 and 6 have been constructed in a stereocontrolled manner, respectively. Copyright © 1996 Elsevier Science Ltd Tautomycin (1), isolated by Isono and co-workers from a culture of *Streptomyces spiroverticillatus*, is an antifungal antibiotic. ¹ It has been reported that 1 induces a morphological change (bleb formation) in human leukemia cells K562. ² More recently, 1 has also been found to inhibit protein serine/threonine phosphatases (PPs) 1 and 2A specifically, and not to inhibit PP2C, similar to a well known tumor promoter, okadaic acid. ³ It is remarkable that tautomycin (1) inhibits strongly both phosphatases 1 and 2A, whereas okadaic acid, which is similar in its molecular size to 1, inhibits PP2A much more strongly than PP1. Determination of the structure of 1 as well as of the absolute configuration by X-ray analysis has not been achieved because of its non-crystallinity. Therefore, the structural determination of 1 was made on the basis of spectroscopic analysis of degradation products and their derivatives with the support of conformational calculation. Its unique structure (with an ester linkage between the maleic anhydride moiety and the polyketide chain) and its interesting biological activities have encouraged synthetic studies on tautomycin, and recently both Ichihara's group and Isobe's group have achieved total syntheses of 1.6.7 We also took note of the remarkable biological activity of tautomycin on PPs and its unique structure, and started synthetic studies on tautomycin to hopefully provide non-natural derivatives of tautomycin as new biological tools for research on the PPs inhibition mechanism, and on the regulation of intracellular signal transduction. In this paper, we describe our total synthesis of tautomycin.⁸ ### Retrosynthetic Plan Examinations of the natural product have revealed its low chemical stability under various reaction conditions.⁴ For instance, cleavage of the ester linkage and dehydration of the C_{21} - C_{22} bond occurs above pH 9, and a retro aldol reaction at the C_{18} - C_{19} bond and an epimerization at C_3 also occur above pH 10. Moreover, the maleic anhydride part of tautomycin (1) is a chemically unstable moiety, because 60% of which exists as the dicarboxylic acid in aqueous solvent at about pH 7. In consideration of their nature, the many functional groups have to be masked appropriately and deprotected under neutral or mildly acidic conditions at the final stage of the synthesis. Our synthetic strategy toward 1 is summarized in **Scheme 1**. First, we decided to protect the hydroxy groups mainly as silyl ethers, for the reasons stated above. Moreover, we expected to prepare the carbonyl groups by oxidative deprotection of p-methoxybenzyl (PMB) groups with DDQ, 9 followed by oxidation of the resulting hydroxy groups; the maleic anhydride part was planned to be constructed from a more stable t-butyl methyl diester, or from a furan ring. Thus we chose the appropriately protected 2 as a key intermediate, which was expected to be synthesized from several fragments. Retrosynthetic disconnection of 2 at the ester linkage generated the C_1 - C_7 - fragment A 3 and the C_1 - C_{26} fragment B 4. It was planned to construct the latter through an aldol reaction using the C_{17} - C_{26} fragment C 5 and the C_1 - C_{16} fragment D 6 as a key step. In the following sections, we describe our synthetic results and related discussions in detail. Scheme 1 ## Construction of the C₁₇-C₂₄ Fragment C 5 As shown in **Scheme 2**, we selected the 2-deoxyglucose derivative 7, 10 as a starting material for the synthesis of the fragment C 5, because the six carbon atoms on 7 corresponded to the C_{20} - C_{25} positions of 5. Namely, 7 has hydroxy groups with the correct absolute configurations at C_{22} and C_{23} , and it should be possible to convert the trityl ether to *gem*-dimethyl groups at C_{25} . Moreover, the acetal group would be thought as a masked form of both a carbonyl group at C_{20} and also a masked hydroxy group with the correct absolute configurations at C_{24} . First the diol 7 was selectively mono-protected via the stannylene acetal, ¹¹ followed by O-methylation and then cleavage of the trityl ether to give the alcohol 10. The terminal isopropyl group was synthesized by a Reagents and conditions: (a) *n*-Bu₂SnO, PhCH₃, reflux; CsF, PMBBr, DMF, r.t., 85% (conv. 93%); (b) NaH, CH₃I, THF, 0 °C to r.t., 97%; (c) HCO₂H-Et₂O-THF (4:3:1), r.t., 84%; (d) (COCl)₂, DMSO, *i*-Pr₂NEt, CH₂Cl₂, -78 to 0 °C, 97%; (e) Zn, CH₂I₂, Al(CH₃)₃, THF, 0 °C, 76%; (f) CH₂N₂, Pd(OAc)₂, Et₂O, 0 °C; 99%; (g) DDQ, CH₂Cl₂-H₂O (18:1), r.t., 95%; (h) H₂, PtO₂, AcOH, 91%; (i) NaH, BnBr, THF-DMF, 0 °C to r.t., 100%; (j) HS(CH₂)₃SH, BF₃·OEt₃, CH₂Cl₂, 0 °C to r.t., 81%; (k) BzCl, Py, DMAP, CH₂Cl₂, 0 °C to r.t.; (l) NBS, (CH₃)₂CO-H₂O (19:1), -23 °C, 86% (2 steps); (m) **20**, *n*-Bu₂BOTf, Et₃N, CH₂Cl₂, -78 to 0 °C, 90%; (n) Cl₃CC(NH)OPMB, TfOH, Et₂O, r.t., 86%; (o) LiOOH, THF-H₂O (3:1), 0 °C to r.t.; (p) CH₃ONHCH₃·HCl, DEPC, Et₃N, DMF, 0 °C to r.t., 63% (2 steps); (q) CH₃Li, THF, -78 °C, 99%. formation-opening of a cyclopropane ring.¹² Namely, aldehyde 11, given by Swern oxidation, was transformed to the olefin 12 using Nozaki reagent.¹³ Unexpectedly, attempts at cyclopropanation using various Simmons-Smith type reactions did not afford satisfactory results. For example, using Et₂Zn and CH₂I₂, 13 was obtained only in low yield (46%) with several unidentified by-products. On the other hand, using the conditions of Suda, ¹⁴ cyclopropanation proceeded smoothly to yield 13 quantitatively. Although the cyclopropane ring of 13 was not opened by hydrogenolysis with Raney Ni (W2), after an oxidative cleavage of PMB group with DDQ, the cyclopropane ring in the resulting alcohol 14 was found to be regioselectively opened by hydrogenolysis with PtO₂ to give 15. According to our first synthetic plan, the C_{22} hydroxy group was planned to be protected as a silyl ether until the final stage of the total synthesis. TBS- or TES-protected alcohols, however, decomposed under the conditions of the following transformation of the acetal to acyclic intermediates. Thus, the C_{22} hydroxy group had to be protected as a Bn ether (16) temporarily. The Bn group proved to be the only protecting group which was stable under the conditions for transformation to 17 using 1,3-propanedithiol and BF₃•Et₂O. Protection of the resulting alcohol 17 as a Bz ester and cleavage of dithioacetal group with NBS¹⁵ yielded the aldehyde 19. Construction of the C_{19} and C_{20} stereogenic centers was achieved by Evans' aldol reaction, ¹⁶ using the aldehyde **19** and the known oxazolidinone **20**, to yield the C_{18} - C_{26} unit **21** as a single diastereomer. The stereochemistry of the newly formed chiral centers was determined on the basis of the precedent ¹⁶ and the successful conversion to **1**. The resulting alcohol **21** was then protected as a PMB ether, giving **22**. After removal of the chiral auxiliary without cleavage of the Bz ester by selective hydrolysis using LiOOH, ¹⁷ the resulting carboxylic acid **23** was converted to the amide **24** using DEPC. ¹⁸ The amide **24** was treated with an excess of CH_3Li^{19} to complete the synthesis of the hydroxyketone **5**, the C_{12} - C_{26} fragment C of **1**. ## Construction of the C₁-C₁₆ Fragment D 6 As shown in the retrosynthetic analysis outlined in **Scheme 3**, it was planned to construct the C_1 - C_{16} fragment D 6 using a Horner-Emmons reaction and a Julia olefination²⁰ as key steps. When we started synthetic studies on tautomycin, the absolute configuration of the seven stereogenic centers which are present in 6 was unknown. We therefore selected chiral building groups of which the both enantiomers were commercially available as starting materials. Thus the C_{12} - C_{16} unit 25, the C_5 - C_{11} unit 26, and the C_1 - C_4 unit 27 were expected to be synthesizable from (-)-28, (+)-DET, and (+)-28, respectively. The most important point regarding the synthesis of 6 is how to synthesize the characteristic spiroketal moiety in a stereocontrolled manner. Because the spiroketal 29 exists in the thermodynamically most stable form based on anomeric effect,²¹ we thought that the corresponding keto-triol, which could be stereoselectively synthesized, would be easily spiroketalized in a stereoselective manner under acidic conditions. The C_1 - C_4 unit 27 was prepared as outlined in Scheme 4. The phenylsulfide 30, which was obtained from (+)-28, was transformed to the Weinreb amide 31.²² On treatment with CH₃Li, 31 was converted to the methylketone 32. After protection of the C_2 carbonyl group as an acetal (33), the resulting sulfide 33 was oxidized with *m*-CPBA to yield the sulfone 34 as a colorless solid. After recrystallization, acetal-exchange of the dioxolane 34 with 1,3-propanedithiol and BF₃•Et₂O gave the dithiane 27, the C_1 - C_4 unit, in 79% yield from (+)-28. The sulfone 27 was recrystallized again to give the optically pure material for a subsequent Julia **Reagents and conditions**: (a) PhSSPh, *n*-Bu₃P, THF, 0 °C to r.t., 99%; (b) Al(CH₃)₃, CH₃ONHCH₃•HCl, CH₂Cl₂, reflux, 95%; (c) CH₃Li, THF, -78 °C, 99%; (d) HO(CH₂)₂OH, PPTS, PhH, reflux, 99%; (e) *m*-CPBA, NaHCO₃, CH₂Cl₂, 0 °C, 100%; (f) HS(CH₂)₃SH, BF₃•OEt₂, CH₂Cl₂, 0 °C to r.t., 87%. ### Scheme 4 Next the C_5 - C_{11} unit **26** was prepared as shown in **Scheme 5**. (+)-DET was transformed to the alcohol **35** in a 8-step sequence of reactions, ^{24a} which we had utilized previously in a total synthesis of rhizoxin. ^{24b} The aldehyde **36**, obtained by Swern oxidation, was treated with potassium phosphonate generated from diisopropyl (ethoxycarbonylmethyl)phosphonate to yield α, β -unsaturated ester **37**. After the olefinic double bond had been reduced with Pd/C in an atmosphere of hydrogen, the resulting saturated ester **38** was transformed to the β -ketophosphonate **26**, the C_5 - C_{11} unit, by treatment with lithium phosphonate generated from dimethyl methylphosphonate. Because complete separation of 26 from excess dimethyl methylphosphonate proved to be impossible, a mixture of these phosphonates was used directly for the following Horner-Emmons reaction with **Reagents and conditions**: (a) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 to 0 °C; (b) (*i*-PrO)₂P(O)CH₂CO₂Et, *t*-BuOK, THF, -78 °C to r.t., 93% (2 steps); (c) H₂, 10%-Pd/C, EtOH, r.t., 94%; (d) (CH₃O)₂P(O)CH₃, n-BuLi, THF, -78 °C, excellent yield. ²⁵ #### Scheme 5 For the synthesis of the C_{12} - C_{16} unit 25, the most important point is how to construct the three consecutive stereogenic centers (C_{13} - C_{15}) in a stereocontrolled maner. Many reagent-controlled methods for the construction of this type of compound are known. For instance, a Sharpless epoxidation²⁶ followed by epoxide opening method, an Evans' aldol reaction, ¹⁶ or Brown's crotylborane method²⁷ may be cited as the most useful methods. In this case, as shown in **Scheme 6**, we decided to utilize an Evans' aldol reaction because of its advantages of a short number of steps and of its generally good diastereoselectivity. Protection of (-)-28 as a PMB ether under acidic conditions and subsequent reduction with lithium aluminium hydride yielded the known alcohol 39. ²⁸ The aldehyde 40, obtained by Swern oxidation of 39, was treated with 20 under the standard conditions of Evans' Reagents and conditions: (a) (1) $Cl_3CC(NH)OPMB$, PPTS, CH_2Cl_2 , r.t., 93%; (2) $LiAlH_4$, Et_2O , 0 °C, 99%; (b) $(COCl)_2$, DMSO, Et_3N , CH_2Cl_2 , -78 to 0 °C, 97%; (c) **20**, n-Bu₂BOTf, Et_3N , CH_2Cl_2 , -78 to 0 °C; (d) $Al(CH_3)_3$, CH_3ONHCH_3 •HCl, THF, -30 °C to r.t.; (e) TESCl, imidazole, DMF, r.t., 79% (diastereoselection of the aldol reaction, 89:11) (3 steps); (f) DIBAL-H, THF, -78 °C, 99%. ### Scheme 6 aldol reaction to yield 41 as an inseparable mixture of diastereomers. The compound 41 was directly transformed to the amide 42 by treatment with $Al(CH_3)_3$ and CH_3ONHCH_3 • $HCl.^{29}$ The TES ether 43, obtained from 42 by treatment with triethylchlorosilane and imidazole, was separated from its undesired diastereomer at this stage. As a result, 43 and its diastereomer was obtained in 79% overall yield by 3 steps from aldehyde 40 and with 89: 11 diastereoselection. The stereochemistry of the newly formed chiral centers was again determined on the basis of the precedent¹⁶ and the successful conversion to 1. The amide 43 was reduced by DIBAL-H to afford the aldehyde 25, the C_{12} - C_{16} unit. With the three units 25, 26 and 27 readily available, we attempted the crucial condensation reactions. First, a mild Horner-Emmons reaction, utilizing LiCl and DBU in CH_3CN , of the phosphonate 26 with the base sensitive aldehyde 25 was found to proceed smoothly without epmerization at C_{13} to give the corresponding enone 44ab in a high E/Z ratio ($E: Z \approx 93: 1$ by ¹H-NMR analysis) and in almost quantitative yield (Scheme 7). ³⁰ The enone 44ab was then converted to the ketone 45 without PMB cleavage by hydrogenation using Raney Ni (W2) in AcOEt. On the other hand, in the case of hydrogenation using Raney Ni (W2) in EtOH, overreduction occurred to yield the corresponding secondary alcohol. We now had the protected keto-diol 45 as an open chain precursor of the C₅-C₁₆ unit 29. On treatment of PMBO OTES PMBO OTES CHO $$(CH_3O)_2P$$ $(CH_3O)_2P$ **Reagents and conditions**: (a) LiCl, *i*-Pr₂NEt, CH₃CN, r.t., 97% (E: Z = 93: 1); (b) H₂, Raney Ni (W2), AcOEt, r.t., 100%; (c) CSA, CH₃OH, r.t., 98%; (d) (COCl)₂ DMSO, Et₃N, CH₂Cl₂, -78 to 0 °C, 97%. 45 with a catalytic amount of camphorsulfonic acid, the three hydroxy groups were, as expected, regenerated and spontaneous spiroketalization occurred in one pot, providing the alcohol 29 as a single product. Because the spectra data (1 H-NMR and 13 C-NMR) for 29 were consistent with those of the corresponding part of a degradation product of natural tautomycin 1, the stereochemistry of 29 seemed likely to be the same as in the natural product, and was finally determined by the successful conversion to 1. The C_5 - C_{16} unit, aldehyde 46, was then obtained by Swern oxidation of 29. We next attempted to complete the synthesis of the C_1 - C_{16} fragment D 6 through a Julia olefination (Scheme 8). The sulfone 27 was treated with n-BuLi and the resulting lithium carbanion was coupled with the aldehyde 46. Acetylation of the β -hydroxysulfone thus obtained and reductive elimination with Na-Hg gave the 47ab in modest yield, as a mixture of stereoisomers. When the sulfone 27 was treated with 2 equiv of n-BuLi at -78 °C and then warmed to 0 °C to improve the reaction, the unexpected by-product 48 was produced in almost the same yield as 47ab in a 3-step sequence. In general, a phenyl sulfone is converted to an α , α -dianion or an α , α -dianion with 2 equiv of n-BuLi. Which of these is formed may be dependent upon substrate and reaction temperature. In our case, a mixture of the α , α -dianion and α , α -dianion was supposed to be formed even at 0 °C. Although the former would be converted over 3 steps to the desired α -alkylation product 47, the latter would mainly be converted to the undesired α -alkylation product 48. To avoid this side reaction, it was necessary to use just 1 equiv of α -BuLi so as to form the α -monoanion. Finally, addition of HMPA was found to increase the monoanion's reactivity, yielding 47ab in 72% yield. **Reagents and conditions**: (a) (1) **27**, n-BuLi (1 equiv), HMPA, THF, -78 to 0 °C then **46**, -78 to 0 °C; (2) Ac₂O, Py, DMAP, CH₂Cl₂, r.t.; (3) 5% Na-Hg, Na₂HPO₄, THF-CH₃OH (3:1), -20 °C, 72% (3 steps); (b) H₂, (Ph₃P)₃RhCl, PhH, r.t., 91 %; (c) DDQ, CH₂Cl₂-H₂O (18:1), r.t., 97%; (d) SO₃•Py, DMSO, Et₃N, r.t., 100%. We then addressed the efficient reduction of the olefin 47ab. Reduction of 47ab with diimide was our first choice, however, this reaction yielded only 49% of 49. On the other hand, using Wilkinson's catalyst, which is known to be applicable to the reduction of an olefin containing a sulfur atom (such as the thioketal in 47ab), the olefin 47ab was successfully hydrogenated to yield 49 in 91% yield. Finally, oxidative cleavage of the PMB group with DDQ and SO₃•Py oxidation of the resulting alcohol 50 furnished aldehyde 6, the C₁-C₁₆ fragment D. ## Construction of the C₁-C₂₆ Fragment B 4 As shown in **Scheme 9**, the coupling of the C_{17} - C_{26} fragment C 5 and the C_1 - C_{16} fragment D 6 was achieved by means of an aldol reaction. That is, the methylketone 5 was treated with 2 equiv of LDA at -78 °C, and aldol reaction of the resulting dianion with the aldehyde 6 furnished the coupling product 51ab as a diastereomixture in 82% yield. The diol 51ab was diacetylated, and the following β -elimination with DBU afforded the enone 53. Reagents and conditions: (a) 5, LDA (2 equiv), THF, -78 °C then 6, 82%; (b) Ac₂O, DMAP, CH₂Cl₂, 0 °C to r.t.; (c) DBU, CH₂Cl₂, 0 °C to r.t., 98% (2 steps). #### Scheme 9 Next we attempted further functional group manipulations including a key stereoselective reduction to complete the synthesis of the C_1 - C_{26} fragment B (**Scheme 10**). Reduction of the enone **53** to the ketone **54** by hydrogenation with Wilkinson's catalyst turned out to be unsuccessful, perhaps due to its bulkiness and the steric hindrance of the substituents in 53. However, the desired 1,4-reduction was achieved under mild conditions using NaTeH³² to give the ketone 54 quantitatively. Stereoselective reduction using bulky L-Selectride[®] then furnished the alcohol 55 as a mixture of inseparable epimers (2:1 selectivity). The major product was supposed to be the expected C_{185} alcohol 55 based on asymmetric induction from the C_{19R} methyl group according to Cram's rule, and finally determined by the successful conversion to 1. After TES-protection, Reagents and conditions: (a) NaTeH, AcOH, EtOH, - 20 °C to r.t. (b) L-Selectride®, THF, -80 °C to -30 °C, 91% (2 steps) (diastereoselection 2:1); (c) TESOTf, i-Pr₂NEt, CH₂Cl₂, -40 °C, 89%; (d) NBS, AgNO₃, γ-collidine, CH₃CN-H₂O (17:3), 0 °C, 81%; (e) L-Selectride®, THF, -40 °C to -30 °C, 100%; (f) PMBMCl, i-Pr₂NEt, CH₂Cl₂, r.t., 89%; (g) H₂, Raney Ni (W2), EtOH, r.t., 80% (conv. 92%); (h) TESOTf, i-Pr₂NEt, CH₂Cl₂, -40 °C to -20 °C, 88%; (i) DIBAL-H, CH₂Cl₂, -78 °C, 100%. ### Scheme 10 the diastereomers were readily separable. It was next necessary to change protecting groups, in order to enable mild deprotection in the final stage of the synthesis. For cleavage of the dithioketal at C_2 , reagents such as NBS, $Hg(ClO_4)_2^{33}$ and $PhI(OTFA)_2^{34}$ provided unsatisfactory results. However, using NBS, $AgNO_3$ and γ -collidine, the dithioketal 56 was converted to the ketone 57 in 81% yield with no epimerization at C_3 . Selective reduction of the ketone 57 at C_2 was achieved using L-Selectride® to give 58 as an epimeric mixture. We used the diastereomixture 58 without separation, since the epimeric hydroxy group would be re-oxidized at a later stage of the synthesis. Surprisingly all attempts to protect 58 as a PMB ether failed. Protection with 4-methoxybenzyl 2,2,2-trichloroacetimidate under acidic conditions using reagents such as camphorsulfonic acid was impossible, because 58 includes acid-sensitive functional groups. Protection with PMB-Br using bases such as NaH, or the stronger KH and in combination with TBAI (used for the purpose of *in situ* generation of more reactive PMB-I) did not proceeded at all. We therefore selected a p-methoxybenzyloxymethyl (PMBM) group for protection of the alcohol 58. The PMBM group was developed by Kozikowski, 35 and a PMBM ether can be formed easily from some secondary alcohols, and later deprotected with DDQ like a PMB ether. As expected, the desired PMBM ether 59 was obtained in 89% yield. Next, benzyl ether **59** at C_{22} was deprotected by hydrogenolysis using Raney Ni (W2). The resulting alcohol **60** was protected as a TES ether to afford **61**. Methanolysis of the acetate **61** at C_{24} did not proceed, most likely due to steric hindrance, and reductive deprotection using DIBAL-H in THF at -78 °C was similarly unsuccessful. The expected reaction did, however, proceed at 0 °C albeit in low yield and with unknown byproducts. We then examined solvent effects. Deprotection with DIBAL-H in pentane, which might conceivably have higher reactivity than in THF, did not give a satisfactory result even at -78 °C, also giving several more-polar by-products. Satisfactory reductive deprotection was finally achieved in CH_2Cl_2 at -78 °C and furnished the alcohol **4**, the C_1 - C_{26} fragment B, in quantitative yield. ## Construction of the C₁,-C₂. Fragment A 3 The C_1 - C_7 fragment A 3 was synthesized using an asymmetric reduction of β -keto ester as a key step (Scheme 11). By using the literature procedure³⁶ itaconic acid, a commercially available starting material, was transformed to the carboxylic acid 62 in a 5-step sequence of reactions. Using DEPC as a condensing reagent the carboxylic acid 62 was converted to the amide 63, which was treated with the lithium enolate³⁷ of methyl acetate to yield the β -keto ester 64. The key asymmetric reduction was achieved by two methods. Asymmetric hydrogenation using Noyori's Ru-BINAP catalyst³⁸ yielded the alcohol **65** quantitatively in 86% ee.³⁹ Alternatively, asymmetric reduction using BH₃•THF and the oxazaborolidine catalyst **66** developed by Corey⁴⁰ also yielded **65** in 57% yield and with 92% ee. Optically pure **65** was obtained using chiral phase HPLC (Daicel Chiralcel OD, hexane: 2-PrOH = 9:1). Protection of 65 as a diethylisopropylsilyl (DEIPS) ether furnished 67, 6,41 which was transformed to the benzyl ester 68 via the carboxylic acid. The furan part of 68 was first treated with singlet oxygen, 42 and a subsequent PCC oxidation then furnished the maleic anhydride 69. The maleic anhydride 69 was then planned to be converted to the much more stable *t*-butyl methyl diester 70 which could be re-converted to 69 under acidic conditions. Unexpectedly the half ester, given by methanolysis of 69, could not be transformed to the *t*-butyl ester using *t*-BuOH, DCC and DMAP. On the other hand, an excellent esterification was achieved by treatment with the *t*-butylisourea 71 prepared from *t*-BuOH and 1,3-diisopropylcarbodiimide. However, cleavage of DEIPS ether also occurred, and so, the resulting alcohol was therefore re-protected to yield the triester 70 as a mixture of isomers (9:1). Finally hydrogenolysis of the benzyl ester 70 with Pd/C under 1 atm pressure of hydrogen furnished the carboxylic acid 3, the C_1 - C_2 - fragment A. Reagents and conditions: (a) CH₁ONHCH₁•HCl, DEPC, Et₃N, DMF, 0 °C to r.t., 97%; (b) AcOCH₁, LDA, THF, -78 °C to 0 °C then HCl, 0 °C to r.t., 58% (conv. 73%); (c) (A) H₂, 100 atom, cat.(S)-BINAP-Ru(II), CH₃OH, 28 °C, 100%, 86% ee; (B) (S)-66, BH₃•THF, THF, 0 °C, 57% (conv. 67%), 92% ee; (d) DEIPSCl, imidazole, CH₂Cl₂, 0 °C to r.t., 98%; (e) (1) LiOH, THF-H₂O (6:1), r.t.; (2) BnOH, DCC, DMAP, THF, r.t. 62% (2 steps); (f) (1) O₂, hv, rose bengal, i-Pr₂NEt, CH₂Cl₂, 0 °C; (2) PCC, MS4A, CH₂Cl₂, r.t. 88% (2 steps); (g) (1) CH₃OH, Et₃N, 0 °C; (2) **70**, CH₂Cl₂, 40 °C; (3) DEIPSCl, imidazole, CH₂Cl₂, 0 °C to r.t. 66% (3 steps); (h) H₂, Pd/C, CH₃OH, r.t., 87%. #### Scheme 11 #### **Esterification with Two Fragments** As previously discussed, the C_1 - C_7 fragment A 3 and the C_1 - C_{26} fragment B 4 had been synthesized stereoselectively, and many of the functional groups of those fragments appropriately protected. We then examined a variety of methods for the esterification using these two fragments (**Scheme 12**). At first, model esterification using the carboxylic acid 3 and the model alcohol 72 (instead of 4) was found to proceed in good yield using either (A) DCC-DMAP method, (B) Keck's method, (C) modified Yamaguchi method, (D) BOPCI method⁴⁶ or (E) DMC method. Unfortunately, however, these procedures did not give satisfactory results for coupling of the fragment 3 and 4. For example, N-acyl transformation occurred to yield by-product 73 together with the recovered alcohol 4 by (A) DCC-DMAP method. This undesired transformation was suppressed by (B) Keck's method, together with the addition of DMAP•HCl; however, the expected coupling product 2 was never obtained. The other methods (C), (D) and (E) gave also recovered 4 without producing 2 at all. These unsatisfactory results appeared to be explicable on the grounds of severe steric hindrance. Reagents and conditions: (A) DCC, DMAP, THF, r.t.; (B) DCC, DMAP, DMAP•HCl, toluene, r.t. to 60 °C; (C) 3, 2,4,6- trichlorobenzoyl chloride, Et₃N, toluene, r.t. then 4, DMAP, toluene, 50 °C to 80 °C; (D) NN-bis(2-oxo-3-oxazolidinyl)phosphinic chloride, Et₃N, DMAP, CH₂Cl₂, r.t. to 40 °C; (E) 2-chloro-1,3-dimethylimidazolinium chloride, DMAP, CH₂Cl₂, r.t. to 40 °C. #### Scheme 12 ## **Total Synthesis** Having obtained unsatisfactory results as discussed above, we revised our strategy concerning the critical esterification. That is, 74 with its pre-synthesized furan ring was adopted as the new C_1 - C_7 fragment for esterification instead of the much more bulky diester 3. We expected that after esterification, total synthesis could be achieved through cleavage of the PMB and PMBM groups, followed by oxidation of the resulting diol, transformation of the furan moiety to the maleic anhydride, and final full deprotection of the silyl groups. For transformation of the furan moiety to maleic anhydride, however, the furan having two ketone groups could not be treated with singlet oxygen, since the ketone group was also reactive towards singlet oxygen. We thus chose Isobe's strategy, which utilized NBS treatment, Jones oxidation, and PCC oxidation for the synthesis of the maleic anhydride. To this end the three hydroxy groups were protected as TBS ethers (instead of TES or DEIPS ethers) which would be stable to the conditions of Jones oxidation. Our final retrosynthesis of tautomycin 1 is summarized in Scheme 13. Scheme 13 The new C_1 - C_2 fragment 74 was synthesized by protection of 65 as a TBS ether followed by hydrolysis of the ester 77 (Scheme 14). In addition, the new C_1 - C_{26} fragment 76 was synthesized from the TES ether 61. When the TES groups of 61 were first deprotected with TBAF, an unexpected by-product, which we assumed to be produced through intramolecular migration of the acetyl group, was obtained along with the expected diol 78. On the other hand, effective deprotection of the silyl groups was successfully achieved under the mildly acidic conditions using HF•Py, with suppression of undesired migration. The resulting alcohol was protected as a TBS diether to give 79, and the following reductive deprotection with DIBAL-H furnished the alcohol 76, the new C_1 - C_{26} fragment B'. **Reagents and conditions :** (a) TBSOTf, CH_2Cl_2 , i- Pr_2NEt , 0 °C, 99%; (b) LiOH, THF- H_2O (6 : 1), r.t., 100%; (c) HF•Py, THF, 0 °C to r.t.; (d) TBSOTf, i- Pr_2NEt , CH_2Cl_2 , -40 °C to 0 °C; (e) DIBAL-H, CH_2Cl_2 , -78 °C, 75% (3 steps) (the migration product, 11%). ### Scheme 14 With these new fragments in hand, the critical esterification was attempted toward total synthesis (Scheme 15). As a result, the most efficient conditions for the esterification were found to be a modified Yamaguchi method using a large excess of DMAP to afford the ester 75 in 72% yield (conv. 88%). The resulting ester 75 was then treated with DDQ for an oxidative cleavage of PMB and PMBM groups. However, deprotection using DDQ in CH_2Cl_2 - H_2O (9:1) gave only a small amount of diol 80, because the deprotection of the PMBM group at C_2 proceeded very slowly compared with that of PMB group at C_{20} , and in addition, an unexpected side reaction occurred. For suppressing this side reaction, cleavage in CH_2Cl_2 -phosphate buffer pH 6.8 (9:1) was examined, and fortunately these conditions were found to furnish the diol 80 in 76% along with the mono-ol (deprotected only at C_{20}) in 10% yield. The diol 80 was oxidized with TPAP to afford diketone 81. R = TBS Reagents and conditions: (a) 74, 2,4,6-trichlorobenzoyl chloride, Et₃N, toluene, r.t. then 76, DMAP, toluene, 50 °C, 72% (conv. 88%); (b) DDQ, CH₂Cl₂-phosphate buffer pH 6.8 (9:1), r.t., 76%; (c) TPAP, NMO, MS4A, CH₃CN, r.t., 87%; (d) (1) NBS, THF-phosphate buffer pH 7.0 (4:1), 0 °C; (2) Jones reagent, acetone, 0 °C, 62% (2 steps); (3) PCC, MS4A, CH₂Cl₂, r.t. 38%; (e) HF•Py, THF, r.t. 7 #### Scheme 15 The diketone **81** was transformed to a mixture of the four isomeric furanones by treatment with NBS at 0 °C, ⁴⁸ followed by Jones oxidation. The mixture of these isomers was oxidized using PCC to afford the maleic anhydride **82**. The synthetic **82** exhibited identical properties to those of the tris-TBS-tautomycin which was synthesized from natural tautomycin (TBSOTf, 2,6-lutidine, CH₂Cl₂, -30 °C to 0 °C). Finally full deprotection of the TBS groups of **82** was achieved using freshly prepared HF•Py to yield (+)-tautomycin (1).⁷ #### Conclusions A total synthesis of (+)-tautomycin (1), a specific inhibitor of PPs, has been accomplished. The key features of the synthetic route to the each fragment are as follows. 1) The C_{17} - C_{26} fragment C 5 was prepared, in a highly selective manner, from the 2-deoxyglucose derivative 7 via a diastereoselective aldol reaction. 2) The C_1 - C_{16} fragment D 6 was synthesized in a highly selective manner from the three units 25, 26 and 27 by means of a Horner- Emmons reaction, a thermodynamically controlled spiroketalization and a Julia olefination, as key steps. The three units 25, 26 and 27 were also obtained from (-)-28, (+)-DET, (+)-28 respectively. 3) The C_1 - C_{26} fragment B' 76 was synthesized via an aldol reaction between 5 and 6, followed by stereoselective reduction using L-Selectride®, and then unification of protecting groups. 4) The C_1 - C_7 - fragment A' 74 was obtained via an asymmetric reduction (92% ee) of β -keto ester 64, and finally 5) the esterification of 74 and 76 by means of a modified Yamaguchi method, followed by functional group manipulations, provided (+)-tautomycin (1). Moreover this route may facilitate the preparation of non-natural derivatives and fragments of 1, for use as new biological tools for research concerning the PPs inhibition mechanism and the associated regulation of intracellular signal transduction. ## **Experimental Part** **General.** Melting points are uncorrected. Optical rotations were measured on a JASCO DIP-140 polarimeter. Infrared (IR) spectra were recorded on a Perkin Elmer 1600 diffraction grating infrared spectrophotometer. NMR spectra were recorded on a JEOL GSX-400 or a JEOL EX-270 spectrometer. Chemical shifts are reported in ppm on the δ scale relative to TMS (δ = 0.00 for ¹H-NMR) or using residual CHCl₃ (δ = 7.26 for ¹H-NMR and δ = 77.0 for ¹³C-NMR) as an internal reference. EI-Mass spectra were measured on a JEOL JMS-DM303 or a JEOL JMS-SX-102A instruments. FAB-Mass spectra were mesured on a JEOL JMS-HX110 instrument. Flash column chromatography was carried out on Merck Art. 9385, Silica gel 60 (230-400 mesh ASTM). Thin layer chromatography was carried out on Merck Art. 5715, Silica gel 60 F₂₅₄ plates. Solvents were dried rigorously and reagents were purified by standard methods. All experiments were performed under anhydrous conditions in an atmosphere of Ar, unless otherwise mentioned. Methyl 2-deoxy-3-*O*-(4-methoxybenzyl)-6-*O*-trityl-α-D-arabino-hexopyranoside (8). A solution of methyl 2-deoxy-6-*O*-trityl-α-D-arabino-hexopyranoside 7 (3.21 g, 7.62 mmol) and dibutyltin oxide (2.22 g, 8.92 mmol) in toluene (50 ml) was azeotropically refluxed with stirring for 6 hr. The mixture was concentrated, and then pumped dry under reduced pressure for 1 hr. To this residue in DMF (90 ml) was added cesium fluoride (2.52 g, 16.6 mmol) at room temperature and the resulting solution was stirred for 1 hr. To the reaction mixture was added 4-methoxybenzyl bromide (1.8 ml, 12.7 mmol). After being stirred for 12 hr, the whole reaction mixture was quenched with water and then diluted with Et₂O. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 8) to give the alcohol 8 (3.51 g, 6.50 mmol; 85% (conv. 93%)) as a white foam and also the recovered starting material 7 (292 mg, 0.70 mmol). $[\alpha]^{24}_D + 34.6 \degree (c 0.99, CHCl₃)$; IR (KBr) 3445, 1559, 1458, 1247, 1052 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.47 (m, 6H), 7.31-7.19 (m, 11H), 6.86 (m, 2H), 4.83 (dd, J = 3.5, 0.7 Hz, 1H), 4.57 (d, J = 11.3 Hz, 1H), 4.49 (d, J = 11.3 Hz, 1H), 3.78 (s, 3H), 3.74 (ddd, J = 11.7, 9.0, 4.9 Hz, 1H), 3.69 (ddd, J = 9.4, 5.5, 3.5 Hz, 1H), 3.56 (dd, J = 9.4, 9.0 Hz, 1H), 3.39 (dd, J = 9.9, 3.5 Hz, 1H), 3.35 (s, 3H), 3.34 (dd, J = 9.9, 5.5 Hz, 1H), 2.51 (br s, 1H), 2.23 (ddd, J = 13.0, 4.9, 0.7 Hz, 1H), 1.63 (ddd, J = 13.0, 11.7, 3.5 Hz, 1H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 159.3, 144.0, 130.6, 129.4, 128.7, 127.8, 127.0, 113.9, 98.4, 86.8, 76.7, 72.3, 71.3, 70.5, 64.3, 55.2, 54.5, 34.8; Anal. Calcd for C₃₄H₁₆O₆: C, 75.53; H, 6.71. Found: C, 75.26; H, 6.77. **Methyl 2-deoxy-3-***O*-(**4-methoxybenzyl**)-**4-***O*-**methyl**-**6-***O*-**trityl**-**α**-**D**-**arabino**-**hexopyranoside** (**9**). To a solution of alcohol **8** (791 mg, 1.46 mmol) in THF (20 ml) were added sodium hydride (60% in oil, 98 mg, 2.45 mmol) and iodomethane (0.17 ml, 2.73 mmol) at 0 °C. After being stirred for 12 hr at rt, the reaction mixture was quenched with saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 8) to give the methyl ether **9** (788 mg, 1.42 mmol; 97%) as a white solid. mp 142-143 °C (recrystallized from AcOEt-hexane); [α]²²_D+66.8 ° (*c* 1.04, CHCl₃); IR (KBr) 3061, 2936, 2899, 2826, 1611, 1514, 1447, 1249, 1172, 1130, 1102, 1054 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.50 (m, 6H), 7.31-7.19 (m, 11H), 6.86 (m, 2H), 4.87 (dd, J = 3.7, 1.2 Hz, 1H), 4.56 (s, 2H), 3.79 (s, 3H), 3.78 (ddd, J = 11.5, 8.9, 5.2 Hz, 1H), 3.61 (ddd, J = 9.9, 4.4, 1.8 Hz, 1H), 3.40 (dd, J = 9.9, 1.8 Hz, 1H), 3.35 (s, 3H), 3.31 (s, 3H), 3.31 (dd, J = 9.9, 8.9 Hz, 1H), 3.15 (dd, J = 9.9, 4.4 Hz, 1H), 2.24 (ddd, J = 13.0, 5.2, 1.2 Hz, 1H), 1.72 (ddd, J = 13.0, 11.5, 3.7 Hz, 1H); EI-MS m/z 311 (M⁺-Tr); Anal. Calcd for C₃₅H₃₈O₆: C, 75.79; H, 6.90. Found: C, 75.82; H, 7.11. Methyl 2-deoxy-3-O-(4-methoxy benzyl)-4-O-methyl-α-D-arabino-hexopyranoside (10). To a solution of trityl ether 9 (301 mg, 0.542 mmol) in THF/Et₂O (1:3, 13.3 ml) was added formic acid (13.3 ml) slowly at rt. After being stirred for 1 hr, the reaction mixture was poured into saturated aqueous NaHCO₃. The organic layer was separated, and the aqueous layer was extracted twice with AcOEt. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:1) to give the alcohol 10 (143 mg, 0.457 mmol; 84%) as a colorless oil. [α]²²_D+109.1 ° (c 1.38, CHCl₃); IR (neat) 3472, 2934, 2834, 1613, 1514, 1248, 1179, 1048 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.28 (m, 2H), 6.88 (m, 2H), 4.78 (dd, J = 3.6, 1.2 Hz, 1H), 4.57 (s, 2H), 3.84 (ddd, J = 11.4, 9.2, 5.2 Hz, 1H), 3.83 (ddd, J = 11.9, 5.1, 3.7 Hz, 1H), 3.80 (s, 3H), 3.76 (ddd, J = 11.9, 7.7, 4.2 Hz, 1H), 3.59 (s, 3H), 3.54 (ddd, J = 9.5, 4.2, 3.7 Hz, 1H), 3.31 (s, 3H), 3.19 (dd, J = 9.5, 9.2 Hz, 1H), 2.23 (ddd, J = 13.1, 5.2, 1.2 Hz, 1H), 1.93 (dd, J = 7.7, 5.1 Hz, 1H), 1.60 (ddd, J = 13.1, 11.4, 3.6 Hz, 1H); EI-MS m/z 312 (M⁺), 121 (PMB: base peak); Anal. Calcd for $C_{16}H_{24}O_6$: C, 61.52; H, 7.75. Found: C, 61.28; H, 7.78. Methyl 2-deoxy-3-O-(4-methoxybenzyl)-4-O-methyl-α-D-arabino-hexodialdopyranoside (11). To a solution of oxalyl chloride (0.37 ml, 4.24 mmol) in CH₂Cl₂ (10 ml) was added DMSO (0.64 ml, 9.02 mmol) dropwise at -78 °C. After being stirred for 30 min at the same temperature, a solution of alcohol 10 (880 mg, 2.82 mmol) in CH₂Cl₂ (3 ml) was slowly added via cannula. After stirring for an additional 30 min at the same temperature, N,N-diisopropylethylamine (3.3 ml, 18.9 mmol) was added. The whole reaction mixture was allowed to warm to 0 °C over 1 h, and then poured into saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted three times with AcOEt. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 3:2) to give the aldehyde 11 (845 mg, 2.72 mmol; 97%) as a colorless oil. IR (neat) 2935, 2835, 1739, 1613, 1514, 1248, 1209, 1180, 1110, 1048 cm⁻¹; EI-MS m/z 310 (M⁺), 281 (M⁺-CHO), 121 (PMB), 31 (OMe: base peak); Anal. Calcd for C₁₆H₂₂O₆: C, 61.92; H, 7.15. Found: C, 61.68; H, 6.94. This compound, which easily forms the monohydrate, was dried for 12 hr with P₂O₅ under reduced pressure for the subsequent olefination. ### (2R, 3S, 4R, 6S)-3,6-Dimethoxy-4-(4-methoxybenzyl)oxy-2-vinyl-3,4,5,6-tetrahydro- 2H-pyran (12). To a suspension of activated zinc dust (16.3 g, 250 mmol) in THF (150 ml) was added diiodomethane (6.70 ml, 83.2 mmol) at rt. After being stirred for 30 min, trimethylaluminium (1.02 M in hexane, 16.5 ml, 16.8 mmol) was added dropwise at 0 °C. After being stirred for additional 1 hr at rt, the mixture was cooled to 0 °C, and aldehyde 11 (6.46 g, 20.8 mmol) in THF (20 ml) was added via cannula. After being stirred for 1.5 hr at the same temperature, the whole reaction mixture was quenched with 2N aqueous NaOH, and filtered. The organic layer was separated, and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with saturated aqueous NH₄Cl and brine, dried (Na₂SO₄), filtered and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:9) to give the olefin 12 (4.87 g, 15.8 mmol; 76%) as a colorless oil. $[\alpha]^{22}$ _n+100.4 ° (c 1.08, CHCl₃); IR (neat) 2934, 2902, 2833, 1613, 1514, 1370, 1248, 1181, 1116, 1049 cm⁻¹; ¹H-NMR (400 MHz, $CDCl_3$) δ 7.28 (m, 2H), 6.87 (m, 2H), 5.97 (ddd, J = 17.3, 10.5, 6.2 Hz, 1H), 5.41 (ddd, J = 17.3, 1.6, 1.5 Hz, 1H), 5.26 (ddd, J = 10.5, 1.5, 1.4 Hz, 1H), 4.79 (dd, J = 3.7, 1.2 Hz, 1H), 4.60 (d, J = 11.1 Hz, 1H),4.57 (d, J = 11.1 Hz, 1H), 3.94 (dddd, $J \approx 9.7$, 6.2, 1.6, 1.4 Hz, 1H), 3.82 (ddd, J = 11.6, 8.8, 5.1 Hz, 1H), 3.80 (s, 3H), 3.54 (s, 3H), 3.31 (s, 3H), 2.94 (dd, J = 9.7, 8.8 Hz, 1H), 2.22 (ddd, J = 13.2, 5.1, 1.2 Hz, 1H), 1.65 (ddd, J = 13.2, 11.6, 3.7 Hz, 1H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 159.1, 135.7, 130.9, 129.2, 117.4, 113.8, 98.4, 84.7, 76.6, 71.8, 71.7, 60.8, 55.3, 54.6, 35.7; EI-MS m/z 308 (M*), 277 (M*-OMe), 121 (PMB: base peak); EI-HRMS Calcd for C₁₇H₂₄O₅: 308.1624; Found: 308.1618. (2R, 3S, 4R, 6S)-2-Cyclopropyl-3,6-dimethoxy-4-(4-methoxybenzyl)oxy-3,4,5,6-tetrahydro-2H-pyran (13). A solution of olefin 12 (635 mg, 2.06 mmol) and diazomethane (about 13.6 mmol) in Et₂O (20 ml) was divided into four parts (a large scale experiment is very dangerous). A catalytic amount of $Pd(OAc)_2$ was added to each of them at 0 °C. The reaction mixture was filtered, and the filtrate was concentrated, and purified by silica gel flash chromatography (AcOEt/hexane, 1 : 9) to give the compound with cyclopropyl side chain 13 (659 mg, 2.04 mmol; 99%) as a pale yellow oil. $[\alpha]^{22}_D$ +86.0 ° (c 1.19, CHCl₃); IR (neat) 2934, 2898, 2833, 1614, 1514, 1248, 1124, 1052 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.28 (m, 2H), 6.87 (m, 2H), 4.73 (dd, J = 3.7, 1.2 Hz, 1H), 4.62 (d, J = 11.2 Hz, 1H), 4.57 (d, J = 11.2 Hz, 1H), 3.80 (s, 3H), 3.73 (ddd, J = 11.4, 8.8, 5.2 Hz, 1H), 3.65 (s, 3H), 3.26 (s, 3H), 3.06 (ddd, J = 9.5, 8.8 Hz, 1H), 2.87 (dd, J = 9.5, 7.9 Hz, 1H), 2.17 (ddd, J = 13.1, 5.2, 1.2 Hz, 1H), 1.62 (ddd, J = 13.1, 11.4, 3.7 Hz, 1H), 1.00 (m, 1H), 0.63 (m, 1H), 0.57-0.48 (m, 2H), 0.31 (m, 1H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 159.1, 131.1, 129.1, 113.8, 98.2, 86.1, 76.5, 74.4, 72.0, 60.8, 55.2, 54.4, 35.8, 13.2, 2.7, 1.7; EI-MS m/z 322 (M⁺), 121 (PMB: base peak); Anal. Calcd for $C_{18}H_{26}O_5$: C, 67.06; H, 8.13. Found: C, 67.03; H, 8.15. (2R,3S,4R,6S)-2-Cyclopropyl-3,6-dimethoxy-3,4,5,6-tetrahydro-2*H*-pyran-4-ol (14). To a solution of PMB ether 13 (7.96 g, 24.7 mmol) in CH₂Cl₂ (90 ml) and water (5ml) was added DDQ (95%, 8.85 g, 37.0 mmol) at rt. After being stirred for 50 min, the reaction mixture was filtered, and the filtrate was washed with saturated aqueous NaHCO₃. The organic layer was separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 1) to give the alcohol 14 (4.72 g, 23.3 mmol; 95%) as a white solid. mp 82-83.5 °C (recrystallized from hexane); [α]²²_D+113.3 ° (c 1.00, CHCl₃); IR (KBr) 3384, 2941, 1443, 1390, 1126, 1103, 1072, 1044 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 4.75 (dd, J = 3.7, 0.9 Hz, 1H), 3.87 (m, 1H), 3.66 (s, 3H), 3.28 (s, 3H), 2.93 (dd, J = 9.2, 9.1 Hz, 1H), 2.79 (dd, J = 9.1, 8.8 Hz, 1H), 2.46 (br d, 1H), 2.12 (ddd, J = 13.1, 5.2, 0.9 Hz, 1H), 1.69 (ddd, J = 13.1, 11.8, 3.7 Hz, 1H), 0.99 (m, 1H), 0.70-0.50 (m, 3H), 0.34 (m, 1H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 98.2, 87.5, 74.8, 68.3, 60.9, 54.5, 37.2, 13.4, 3.0, 2.5; EI-MS m/z 171 (M⁺-OMe), 74 (CH₂CH(OMe)O: base peak); Anal. Calcd for C₁₀H₁₈O₄: C, 59.39; H, 8.97. Found: C, 59.28; H, 9.20. (2*R*,3*S*,4*R*,6*S*)-2-Isopropyl-3,6-dimethoxy-3,4,5,6-tetrahydro-2*H*-pyran-4-ol (15). A solution of the compound with cyclopropyl side chain 14 (2.32 g, 11.5 mmol) and platinum (IV) oxide hydrate 308 mg (1.36 mmol) in AcOH (15 ml) was stirred vigorously under 1 atm pressure of hydrogen at rt for 5 days. The reaction mixture was filtered, and the filtrate was neutralized with saturated aqueous NaHCO₃ at 0 °C, and diluted wih AcOEt. The organic layer was separated, and the aqueous layer was extracted twice with AcOEt. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 2) to give the compound with isopropyl side chain 15 (2.15 g, 10.5 mmol; 91%) as a white solid. mp 65-67 °C (recrystallized from AcOEt-hexane); [α]²⁴_D+154.9 ° (*c* 1.00, CHCl₃); IR (KBr) 3448, 2965, 2936, 1472, 1349, 1210, 1107, 1084, 1042 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 4.75 (dd, *J* = 3.8, 1.2 Hz, 1H), 3.96 (dddd, *J* = 11.5, 8.9, 5.1, 2.5 Hz, 1H), 3.57 (s, 3H), 3.38 (dd, *J* = 9.8, 2.0 Hz, 1H), 3.29 (s, 3H), 2.93 (dd, *J* = 9.8, 8.9 Hz, 1H), 2.32 (d, *J* = 2.5 Hz, 1H), 2.10 (ddd, *J* = 13.0, 5.1, 1.2 Hz, 1H), 2.06 (dqq, *J* = 7.0, 7.0, 2.0 Hz, 1H), 1.65 (ddd, *J* = 13.0, 11.5, 3.8 Hz, 1H), 1.05 (d, *J* = 7.0 Hz, 3H), 0.96 (d, *J* = 7.0 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 98.1, 83.3, 73.8, 69.4, 60.4, 54.4, 37.4, 27.2, 20.4, 15.0; EI-MS m/z 204 (M*), 173 (M*-OMe), 161 (M*- CHMe₂), 74 (CH₂CH(OMe)O: base peak); Anal. Calcd for $C_{10}H_{20}O_4$: C, 58.80; H, 9.87. Found : C, 58.55; H, 10.00. (2R, 3S, 4R, 6S)-4-Benzyloxy-2-isopropyl-3,6-dimethoxy-3,4,5,6-tetrahydro-2H-pyran (16). To a solution of alcohol 15 (2.11 g, 10.3 mmol) in THF (40 ml) were added DMF (10 ml) and NaH (60%, 680 mg, 17.0 mmol) and benzyl bromide (1.8 ml, 15.1 mmol) at 0 °C. After being stirred for 12 hr at rt, the reaction mixture was quenched with MeOH. After being stirred for an additional 1 hr, saturated aqueous NH₄Cl was added. The organic layer was separated, and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 12) to give the benzyl ether 16 (3.03 g, 10.3 mmol; 100%) as a colorless oil. $[\alpha]_{D}^{22}$ +109.0 ° (c 1.22, CHCl₃); IR (neat) 2960, 2932, 1370, 1209, 1118, 1095, 1064 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 4.75 (dd, J = 3.8, 1.1 Hz, 1H), 4.63 (s, 2H), 3.82 (ddd, J = 11.5, 8.6, 5.2 Hz, 1H), 3.59 (s, 3H), 3.38 (dd, J = 9.8, 2.0 Hz, 1H), 3.28 (s, 3H), 3.07 (dd, J = 9.8, 8.6 Hz, 1H), 2.23 (ddd, J = 13.1, 5.2, 1.1 Hz, 1H), 2.11 (dqq, J = 6.9, 6.9, 2.0 Hz, 1H), 1.60 (ddd, J = 13.1, 11.5, 3.8 Hz, 1H), 1.03 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 138.8, 128.3, 127.6, 127.5, 98.1, 81.5, 77.9, 74.0, 71.8, 60.5, 54.3, 35.5, 27.0, 20.3, 15.1; MS m/z 294 (M⁺), 263 (M⁺-OMe), 251 (M⁺-CHMe₂), 91 (Bn: base peak); Anal. Calcd for C₁₇H₂₆O₄ : C, 69.36; H, 8.90. Found : C, 69.66; H, 8.77. (3R, 4R, 5R)-5-Benzyloxy-6-(1,3-dithian-2-yl)-4-methoxy-2-methyl-3-hexanol (17). To a solution of benzyl ether 16 (307 mg, 1.04 mmol) in CH₂Cl₂ (10 ml) were added 1,3-propanedithiol (0.11ml, 1.10 mmol) and BF₃•Et₂O (0.13 ml, 1.06 mmol) at 0 °C. After being stirred for 24 hr at rt, the reaction mixture was quenched with 2N aqueous NaOH. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NH₄Cl and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:7) to give the 1,3-dithiane 17 (313 mg, 0.845 mmol; 81%) as a colorless oil. [α]²²_D+31.4 ° (c 1.14, CHCl₃); IR (neat) 3490, 2929, 2825, 1451, 1422, 1098 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 4.66 (s, 2H), 4.14 (m, 1H), 4.07 (dd, J = 8.6, 6.0 Hz, 1H), 3.56 (ddd, J = 8.2, 3.6, 3.4 Hz, 1H), 3.38 (s, 3H), 3.19 (dd, J = 8.1, 3.4 Hz, 1H), 3.09 (d, J = 3.6 Hz, 1H), 2.87-2.71 (m, 4H), 2.21-2.06 (m, 3H), 1.94-1.80 (m, 2H), 0.96 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 137.5, 128.6, 128.2, 78.7, 75.5, 74.8, 73.0, 58.4, 44.1, 35.5, 30.1, 29.7, 29.4, 26.0, 19.7, 15.8; EI-MS m/z 370 (M⁺), 327 (M⁺-CHMe₂), 91 (Bn: base peak); Anal. Calcd for C₁₉H₃₀O₃S₂: C, 61.58; H, 8.16. Found: C, 61.32; H, 8.33. (1R,2S,3R)-3-Benzyloxy-4-formyl-1-isopropyl-2-methoxybutyl benzoate (19). To a solution of alcohol 17 (614 mg, 1.66 mmol) in CH₂Cl₂ (15 ml) were added pyridine (2.04 ml, 25.2 mmol), benzoyl chloride (1.88 ml, 16.2 mmol), and a catalytic amount of DMAP at 0 °C. After being stirred for 3 days at rt, the reaction mixture was quenched with 1N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:10) to give a mixture of the benzoyl ester **18** and benzoyl chloride. To a solution of NBS (2.49 g, 14.0 mmol) in acetone/water (95:5, 45 ml) was added a solution of the mixture (1,3-dithiane **18** and benzoyl chloride) in acetone/water (95:5, 17 ml) at -23 °C. After being stirred for 10 min at the same temperature, the reaction mixture was quenched with aqueous $Na_2S_2O_3$ and then diluted with AcOEt. The organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried (Na_2SO_4) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:6) to give the aldehyde **19** (545 mg, 1.42 mmol; 86% (2 steps)) as a yellow oil. IR (neat) 2965, 2933, 1722, 1452, 1314, 1272, 1099, 1071 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 9.79 (dd, J = 2.3, 1.2 Hz, 1H), 8.02 (m, 2H), 7.55 (m, 1H), 7.40 (m, 2H), 7.26-7.21 (m, 5H), 5.35 (dd, J = 7.7, 3.8 Hz, 1H), 4.52 (d, J = 11.1 Hz, 1H), 4.47 (d, J = 11.1 Hz, 1H), 4.16 (ddd, J = 6.4, 5.2, 3.5 Hz, 1H), 3.54 (dd, J = 7.7, 3.5 Hz, 1H), 3.45 (s, 3H), 2.83 (ddd, J = 16.9, 5.2, 1.2 Hz, 1H), 2.79 (ddd, J = 16.9, 6.4, 2.3 Hz, 1H), 2.26 (dqq, J = 6.8, 6.8, 3.8 Hz, 1H), 1.05 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H); EI-MS m/z 221 (M⁺-BnOCHCH₂CHO), 105 (Bz: base peak), 91 (Bn). [3(2R, 3S, 5R, 6S, 7R), 4R]-3-(7-Benzoyloxy-5-benzyloxy-3-hydroxy-6-methoxy-2,8dimethyl-1-oxononyl)-4-isopropyl-2-oxazolidinone (21). To a solution of (R)-(-)-4-isopropyl-3propionyl-2-oxazolidinone 20 (0.48 ml, 2.84 mmol) in CH₂Cl₂ (10 ml) were added n-Bu₂BOTf (1.0 M in CH,Cl₂, 3.4 ml, 3.40 mmol) and triethylamine (0.57 ml, 4.09 mmol) at 0 °C. After being stirred for 1 hr at 0 °C, the reaction mixture was cooled to -78 °C. To the cooled mixture was added aldehyde 19 (519 mg, 1.35 mmol) in CH₂Cl₂ (3 ml). After being stirred for 1.5 hr at -78 °C, the whole reaction mixture was gradually warmed to 0 °C, stirred for 0.5 hr at the same temperature, and then quenched with pH 7 phosphate buffer (6.5 ml) in MeOH (20 ml). After 5 min, 30 % H₂O₂/MeOH (1:1, 6.5 ml) was further added. The quenched solution was stirred for 1 h at 0 °C, and concentrated (bath temperature ≤ 30 °C). To the resulting mixture were added AcOEt and water. The organic layer was separated, and the aqueous layer was extracted three times with AcOEt. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 2:5) to give the alcohol 21 (694 mg, 1.22 mmol; 90%) as a white foam. $[\alpha]^{22}$, -25.1 ° (c 1.21, CHCl₁); IR (KBr) 3421, 1774, 1719, 1702, 1618, 1560, 1459 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 8.02 (m, 2H), 7.53 (m, 1H), 7.39 (m, 2H), 7.29-7.19 (m, 5H), 5.34 (dd, J = 6.8, 4.3 Hz, 1H), 4.62 (d, J = 11.1 Hz, 1H), 4.51 (d, J = 11.1 Hz, 1H), 4.41 (ddd, J = 11.1 Hz, 1H), 4.51 (d, J = 11.1 Hz, 1H), 4.51 (ddd, 1H 8.2, 3.9, 3.0 Hz, 1H), 4.23 (dd, J = 9.0, 8.2 Hz, 1H), 4.19 (dd, J = 9.0, 3.0 Hz, 1H), 4.05 (m, 1H), 3.85 (m, 1H), 3.78 (dq, J = 6.9, 3.3 Hz, 1H), 3.60 (dd, J = 6.8, 3.9 Hz, 1H), 3.50 (s, 3H), 3.23 (d, J = 2.2 Hz, 1H), 2.34 (dqq, J = 7.0, 7.0, 3.9 Hz, 1H), 2.25 (dqq, J = 6.8, 6.7, 4.3 Hz, 1H), 1.95-1.83 (m, 2H), 1.24 (d, J = 6.9 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H) 7.0 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 176.3, 165.9, 153.6, 138.1, 132.8, 130.4, 129.7, 128.3, 128.2, 128.1, 127.5, 80.4, 77.6, 76.3, 72.5, 70.1, 63.3, 59.5, 58.3, 42.8, 34.8, 29.0, 28.4, 20.2, 17.8, 17.0, 14.7, 12.0; EI-MS m/z 570 (M+H), 105 (Bz: base peak), 91 (Bn); Anal. Calcd for C₁₂H₄₁NO₈: C, 67.46; H. 7.61; N. 2.46. Found : C. 67.39; H. 7.49; N. 2.49. [3(2R, 3S, 5R, 6S, 7R), 4R]-3-(7-Benzoyloxy-5-benzyloxy-6-methoxy-3-(4-methoxy-benzyl)oxy-2,8-dimethyl-1-oxononyl)-4-isopropyl-2-oxazolidinone (22). To a solution of alcohol 21 (450 mg, 0.790 mmol) in Et₂O (15 ml) were added 4-methoxybenzyl 2,2,2-trichloroacetimidate (0.34 ml, 1.64 mmol), 0.1 % (v/v) trifluoromethanesulfonic acid in Et₂O (0.21 ml, 0.237 mmol) at rt. After being stirred for 5 min at rt, the reaction mixture was quenched with saturated aqueous NaHCO₃. The organic layer was separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:6) to give the PMB ether 22 (469 mg, 0.680 mmol; 86%) as a colorless oil. $[\alpha]^{2^{2}}$ $_{n}$ -30.9 ° (c 1.11, CHCl₃); IR (neat) 2965, 1770, 1714, 1613, 1514, 1454, 1384, 1274, 1177, 1113 cm $^{-1}$; 1 H-NMR (400 MHz, CDCl $_{3}$) δ 8.01 (m, 2H), 7.51 (m, 1H), 7.35 (m, 2H), 7.28-7.19 (m, 5H), 7.09 (m, 2H), 6.73 (m, 2H), 5.38 (dd, J = 7.7, 3.3 Hz, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.48 (11.3 Hz, 1H), 4.42 (d, J = 10.8 Hz, 1H), 4.35 (d, J = 10.8 Hz, 1H), 4.07 (ddd, J = 8.2, 3.8, 2.4 Hz, 1H), 4.03 (dq, J = 7.0, 6.8 Hz, 1H), 3.97 (dd, J = 9.0, 2.4 Hz, 1H), 3.83-3.74 (m, 2H), 3.77 (s, 3H), 3.69 (dd, J= 9.0, 8.2 Hz, 1H), 3.60 (dd, J = 7.7, 3.2 Hz, 1H), 3.49 (s, 3H), 2.36-2.23 (m, 2H), 2.12-1.98 (m, 2H),1.27 (d, J = 6.8 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 7.0 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 174.9, 165.9, 159.0, 153.6, 138.6, 132.7, 130.6, 130.4, 129.8, 129.6, 128.3, 128.0, 127.2, 113.6, 79.8, 77.3, 76.2, 74.9, 71.7, 70.9, 62.9, 59.7, 58.6, 55.2, 41.6, 31.9, 29.0, 28.2, 20.3, 18.0, 16.6, 14.6, 13.9; EI-MS m/z 598 (M*-Bn), 121 (PMB: base peak), 105 (Bz), 91 (Bn); Anal. Calcd for C₄₀H₅₁NO₆: C, 69.65; H, 7.43; N, 2.03. Found: C, 69.48; H, 7.66; N, 2.16. (2R, 3S, 5R, 6S, 7R)-7-Benzoyloxy-5-benzyloxy-N,6-dimethoxy-3-(4-methoxybenzyl)oxy-N, 2, 8-trimethylnonanamide (24). To a solution of the imide 22 (6.45 g, 9.36 mmol) in THF/water (3:1, 190 ml) were added 30% H₂O₂ (8.0 ml, 70.6 mmol) and lithium hydroxide monohydrate (790.3 mg, 18.8 mmol) at 0 °C. After being stirred for 11 hr at rt, the reaction mixture was quenched with 1.5N aqueous Na₂SO₃ (60 ml) at 0 °C. After addition of 1N aqueous HCl and AcOEt, the organic layer was separated, and the aqueous layer was extracted three times with AcOEt. The combined organic layers were dried (Na, SO₄), and concentrated to give the carboxylic acid 23, which was used without further purification. To a solution of the carboxylic acid and N,O-dimethylhydroxylamine hydrochloride (1.11 g, 11.3 mmol) in DMF (70 ml) were added diethylphosphoryl cyanide (1.6 ml, 10.5 mmol) and triethylamine (2.9 ml, 20.8 mmol) at 0 °C. After being stirred for 2 hr at rt, the reaction mixture was quenched with 1N aqueous HCl and AcOEt, and the organic layer was separated. The aqueous layer was further extracted three times with AcOEt. The combined organic layers were washed with saturated aqueous NaHCO₂ and brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 2:5) to give the amide 24 (3.69 g, 5.93 mmol; 63% (2 steps)) as a colorless oil. $[\alpha]_{3}^{23} -25.7 \circ (c \ 0.96, \text{CHCl}_3)$; IR (neat) 2964, 1720, 1650, 1613, 1585, 1514, 1454, 1387, 1248, 1175, 1112 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 8.00 (m, 2H), 7.49 (m, 1H), 7.35 (m, 2H), 7.37-7.20 (m, 7H), 7.04 (m, 2H), 6.71 (m, 2H), 5.45 (dd, J = 8.0, 3.0 Hz, 1H), 4.47 (d, J = 10.8 Hz, 1H), 4.43 (d, J = 10.4 Hz, 1H), 4.41 (d, J = 10.8 Hz, 1H), 4.37 (d, J = 10.4 Hz, 1H), 3.76 (s, 3H), 3.78-3.70 (m, 2H), 3.58 (dd, J = 8.0, 2.3 Hz, 1H), 3.56 (s, 3H), 3.53 (s, 3H), 3.14 (s, 3H), 3.12 (br m, 1H), 2.27 (dqq, J = 6.9, 6.9, 3.0 Hz, 1H), 2.01-1.94 (m, 2H), 1.26 (d, J = 6.9 Hz, 3H), 1.08 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₁) δ 175.9, 165.8, 159.1, 138.4, 132.8, 130.4, 130.3, 129.7, 129.3, 128.40, 128.36, 128.1, 127.4, 113.7, 80.1, 77.8, 76.2, 75.7, 72.6, 72.2, 61.4, 60.4, 55.2, 41.1, 34.4, 32.1, 28.8, 20.5, 16.6, 14.3; EI-MS m/z 622 (M*), 121 (PMB: base peak), 105 (Bz), 91 (Bn); Anal. Calcd for $C_{36}H_{47}NO_8$: C, 69.54; H, 7.62; N, 2.25. Found: C, 69.25; H, 7.63; N, 2.43. (3R, 4S, 6R, 7R, 8R)-6-Benzyloxy-8-hydroxy-7-methoxy-4-(4-methoxybenzyl)oxy-3,9-dimethyl-2-decanone (5). To a solution of amide 24 (71.6 mg, 0.115 mmol) in THF (2 ml) was added methyllithium (1.11 *M* in Et₂O, 0.52 ml, 0.572 mmol) dropwise at -78 °C. After being stirred for 20 min at the same temperature, the reaction mixture was added to a vigorously stirred mixture of saturated aqueous NH₄Cl and CH₂Cl₂ via cannula at 0 °C. The organic layer was separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 1 : 8) to give the methyl ketone 5 (54.0 mg, 0.114 mmol; 99%) as a colorless oil. [α]²⁵_D-12.1 ° (c 0.91, CHCl₃); IR (neat) 3063, 3031, 2959, 2933, 2346, 1710, 1612, 1586, 1514, 1455, 1365, 1202, 1249, 1177, 1095 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.35-7.19 (m, 7H), 6.86 (m, 2H), 4.57 (s, 2H), 4.44 (m, 2H), 3.90 (m, 1H), 3.80 (s, 3H), 3.77 (m, 1H), 3.57 (m, 1H), 3.37 (s, 3H), 3.22 (dd, J = 8.0, 2.7 Hz, 1H), 3.10 (br m, 1H), 2.78 (m, 1H), 2.04 (s, 3H), 2.01 (m, 1H), 1.92 (m, 1H), 1.87 (m, 1H), 1.14 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H); FAB-MS m/z 473 (M⁺+H), 121 (PMB : base peak), 91 (Bn); FAB-HRMS Calcd for C₂₈H₄₁O₆ (M⁺+H) : 473.2903. Found : 473.2904. (*R*)-Methyl 2-methyl-3-(phenylthio)propionate (30). To a solution of (*S*)-(+)-methyl 3-hydroxy-2-methylpropionate (+)-28 (5.0 ml, 45.3 mmol) in THF (50 ml) were added diphenyl disulfide (15.4 g, 70.5 mmol) and tributylphosphine (13.8 ml, 70.5 mmol) at 0 °C. After being stirred for 24 hr at rt, the reaction mixture was concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 1:40) to give the sulfide 30 (9.40 g, 44.7 mmol; 99%) as a yellow oil. [α]²⁴_p+64.3 ° (c 1.59, CHCl₃); IR (neat) 2976, 2951, 1732, 1583, 1480, 1455, 1436, 1211, 1165, 1025 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.36 (m, 2H), 7.29 (m, 2H), 7.20 (m, 1H), 3.67 (s, 3H), 3.27 (dd, J = 13.4, 7.2 Hz, 1H), 2.93 (dd, J = 13.4, 7.0 Hz, 1H), 2.70 (ddq, J = 7.2, 7.1, 7.0 Hz, 1H), 1.27 (d, J = 7.1 Hz, 3H); EI-MS m/z 210 (M⁺); Anal. Calcd for C₁₁H₁₄O₂S: C, 62.83; H, 6.71. Found: C, 62.55; H, 6.66. (*R*)-*N*-Methoxy-*N*, 2-dimethyl-3-(phenylthio) propionamide (31). To a suspension of *N*, *O*-dimethylhydroxylamine hydrochloride (585 mg, 6.00 mmol) in CH_2Cl_2 (10 ml) was added trimethylaluminium (0.99 *M* in hexane, 6.0 ml, 5.94 mmol) dropwise at 0 °C. After being stirred for 1 hr at rt, to this suspension was added ester 30 (224 mg, 1.07 mmol) in CH_2Cl_2 (2 ml) at -20 °C, and then the whole reaction mixture was refluxed for 4 hr. The reaction mixture was added to a vigorously stirred mixture of 0.5 *N* aqueous HCl and CH_2Cl_2 (1 : 1, 200 ml) via cannula at 0 °C. The organic layer was separated, and washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 1 : 4) to give the amide 31 (242 mg, 1.01 mmol; 95%) as a yellow oil. $[\alpha]_{-0}^{24} + 44.2 \circ (c 1.23, CHCl_3)$; IR (neat) 2970, 2934, 1660, 1480, 1462, 1439, 1417, 1385 cm⁻¹; H-NMR (400 MHz, CDCl₃) δ 7.36 (m, 2H), 7.28 (m, 2H), 7.18 (m, 1H), 3.52 (s, 3H), 3.30 (dd, J = 13.1, 7.7 Hz, 1H), 3.18 (s, 3H), 3.11 (ddq, J = 7.7, 6.8, 6.5 Hz, 1H), 2.91 (dd, J = 13.1, 6.5 Hz, 1H), 1.24 (d, J = 6.8 Hz, 3H); EI-MS m/z 239 (M⁺), 179 (M⁺-N(Me)OMe), 151 (M⁺-C(O)N(Me)OMe), 123 (PhSCH₂), 109 (PhS); Anal. Calcd for $C_{12}H_{17}NO_2S$: C, 60.22; H, 7.16; N, 5.85. Found: C, 59.97; H, 7.44; N, 5.61. - (*R*)-3-Methyl-4-(phenylthio)-2-butanone (32). To a solution of amide 31 (4.85 g, 20.3 mmol) in THF (150 ml) was added methyllithium (1.4 *M* in Et₂O, 36.0 ml, 50.4 mmol) dropwise at -78 °C. After being stirred for 30 min at the same temperature, the reaction mixture was added to a vigorously stirred mixture of saturated aqueous NH₄Cl and THF (2:1, 200 ml) via cannula at 0 °C. The organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:12) to give the methyl ketone 32 (3.91 g, 20.1 mmol; 99%) as a pale yellow oil. [α]²²_D +37.8 ° (*c* 1.06, CHCl₃); IR (neat) 2970, 1718, 1583, 1480, 1458, 1438, 1420, 1358, 1159, 1024 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.36-7.26 (m, 4H), 7.20 (m, 1H), 3.25 (dd, *J* = 13.1, 6.8 Hz, 1H), 2.86 (dd, *J* = 13.1, 6.8 Hz, 1H), 2.77 (ddq, *J* = 7.1, 6.8, 6.8 Hz, 1H), 2.17 (s, 3H), 1.22 (d, *J* = 7.1 Hz, 3H); EI-MS *m/z* 194 (M⁺), 151 (M⁺- MeCO), 123 (PhSCH₂), 109 (PhS), 85 (M⁺-PhS); Anal. Calcd for C₁₁H₁₄OS: C, 68.00; H, 7.26. Found: C, 67.72; H, 7.33. - (*R*)-2-Methyl-2-[1-methyl-2-(phenylthio)ethyl]-1,3-dioxolane (33). To a solution of methyl ketone 32 (3.91 g, 20.1 mmol) in benzene (150 ml) was added ethylene glycol (5.0 ml, 89.7 mmol) and pyridinium *p*-toluenesulfonate (509 mg, 2.02 mmol) at rt. After refluxing azeotropically with stirring for 3 days, the reaction mixture was quenched with water at rt. The organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 40) to give the acetal 33 (4.74 g, 19.9 mmol; 99%) as a yellow oil. $\{\alpha\}^{22}_{D}$ -66.5 ° (*c* 1.07, CHCl₃); IR (neat) 2980, 2880, 1481, 1438, 1380, 1154, 1089, 1059, 1039 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.34 (m, 2H), 7.27 (m, 2H), 7.14 (m, 1H), 3.99-3.84 (m, 4H), 3.39 (dd, J = 12.8, 2.7 Hz, 1H), 2.53 (dd, J = 12.8, 10.7 Hz, 1H), 1.95 (ddq, J = 10.7, 6.9, 2.7 Hz, 1H), 1.29 (s, 3H), 1.13 (d, J = 6.9 Hz, 3H); EI-MS m/z 238 (M⁺), 123 (PhSCH₂), 87 (M⁺-PhSCH₂CHCH₃: base peak); Anal. Calcd for C₁₃H₁₈O₂S: C, 65.51; H, 7.61. Found: C, 65.30; H, 7.40. - (*R*)-2-Methyl-2-[1-methyl-2-(phenylsulfonyl)ethyl]-1,3-dioxolane (34). To a solution of sulfide 33 (4.74 g, 19.9 mmol) in CH₂Cl₂ (100 ml) were added NaHCO₃ and *m*-chloroperbenzoic acid (80%, 10.7 g, 49.6 mmol) at 0 °C. After being stirred for 20 min at the same temperature, the reaction mixture was poured into saturated aqueous NaHCO₃. The separated organic layer was washed with aqueous Na₂S₂O₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 1 : 3) to give the sulfone 34 (5.38 g, 19.9 mmol; 100%) as a white solid. mp 70-73 °C (recrystallized from AcOEt-hexane); $[\alpha]_{D}^{23}$ -23.0 ° (*c* 1.19, CHCl₃); IR (KBr) 2983, 2886, 1447, 1304, 1241, 1145, 1086, 1062 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.93 (m, 2H), 7.66 (m, 1H), 7.58 (m, 2H), 3.95-3.81 (m, 3H), 3.68 (m, 1H), 3.44 (dd, J = 14.1, 1.6 Hz, 1H), 2.88 (dd, J = 14.1, 10.2 Hz, 1H), 2.27 (ddq, J = 10.2, 6.9, 1.6 Hz, 1H), 1.20 (d, J = 6.9 Hz, 3H), 1.19 (s, 3H); EI-MS m/z 255 (M*-Me), 141 (PhSO₂), 129 (M*-PhSO₂), 87 (M*-PhSO₂CH₂CHCH₃: base peak); Anal. Calcd for C₁₃H₁₈O₄S: C, 57.76; H, 6.71. Found: C, 57.51; H, 6.72. (S)-2-Methyl-2-[1-methyl-2-(phenylsulfonyl)ethyl]-1,3-dithiane (27). To a solution of acetal 34 (515 mg, 1.91 mmol) in CH₂Cl₂ (20 ml) were added 1,3-propanedithiol (0.31 ml, 3.09 mmol) and boron trifluoride etherate (0.03 ml, 0.24 mmol) at 0 °C. After being stirred for 12 hr at rt, the reaction mixture was quenched with 6 N aqueous NaOH. The separated organic layer was washed with saturated aqueous NH₄Cl and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:5) to give the sulfone 27 (526 mg, 1.66 mmol; 87%) as a white solid. mp 99-101 °C (recrystallized from AcOEt-hexane); $[\alpha]^{22}_{D}$ -92.8 ° (c 1.06, CHCl₃); IR (KBr) 2971, 2926, 1446, 1303, 1249, 1149, 1086 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.96 (m, 2H), 7.67 (m, 1H), 7.59 (m, 2H), 3.88 (m, 1H), 2.90 (dd, J = 13.6, 9.7 Hz, 1H), 2.87-2.63 (m, 4H), 2.53 (m, 1H), 1.93 (m, 1H), 1.83 (m, 1H), 1.36 (d, J = 6.8 Hz, 3H), 1.34 (s, 3H); EI-MS m/z 316 (M⁺), 133 (M⁺-PhSO₂CH₂CHCH₃: base peak); Anal. Calcd for C₁₄H₂₀O₂S₃: C, 53.13; H, 6.37. Found: C, 53.17; H, 6.54. (2E, 4R, 5R)-Ethyl 5,6-(diethylmethylenedioxy)-4-methyl-2-hexenoate (37), DMSO (5.5 ml, 77.5 mmol) was added dropwise to a solution of oxalyl cholide (3.1 ml, 35.5 mmol) in CH₂Cl₂ (75 ml) at -78 $^{\circ}$ C. After being stirred for 30 min at the same temperature, a solution of (2R,3R)-3,4-diethylmethylenedioxy-2methyl-butan-1-ol 35 (6.041 g, 32.1 mmol) in CH₂Cl₂ (15 ml) was slowly added via cannula. After stirring for an additional 30 min at the same temperature, triethylamine (22.0 ml, 158 mmol) was added. The whole reaction mixture was then allowed to warm to 0 °C over a 1 hr period, and poured into saturated aqueous NH_aCl. The organic layer was separated, and the aqueous layer was extracted three times with Et,O. The combined organic layers were washed with brine, dried (Na, SO₄) concentrated to give the aldehyde 36, which was used without further purification. To a suspension of potassium ten-butoxide (10.79 g, 96.2 mmol) in THF (150 ml) was added diisopropyl (ethoxycarbonylmethyl)phosphonate (23.0 ml, 96.7 mmol) at 0 °C, and the mixture was stirred for 2 hr at rt. The crude aldehyde 36, in THF (15 ml), was then added to the mixture slowly via cannula at -78 °C. After being stirred for 40 min at rt, the reaction mixture was poured into saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with brine, dried (Na,SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:15) to give the ester (7.63 g, 29.8 mmol; 93% (2 steps)) as a pale yellow oil. $[\alpha]^{25}_{p} + 25.9^{\circ}$ (c 1.20, CHCl₃); IR (neat) 2974, 2939, 2881, 1721, 1464, 1271, 1250, 1182, 1082, 1040 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.00 (dd, J = 15.9, 7.4 Hz, 1H), 5.87 (dd, J = 15.9, 1.2 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.04 (dd, J = 7.7, 6.2 Hz, 1H), 3.98 (ddd, J = 7.7) 7.6, 7.1, 6.2 Hz, 1H), 3.59 (dd, J = 7.7, 7.6 Hz, 1H), 2.49 (dddq, J = 7.4, 7.1, 6.9, 1.2 Hz, 1H), 1.64 (q, J ≈ 7.5 Hz, 2H), 1.61 (q, J = 7.5 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H), 0.90 (t, J = 7.5Hz, 3H), 0.88 (t, J = 7.5 Hz, 3H); EI-MS m/z 256 (M⁺), 227 (M⁺-Et); Anal. Calcd for $C_{14}H_{24}O_4$: C, 65.60; H, 9.44. Found: C, 65.39; H, 9.21. (4R,5R)-Ethyl 5,6-(diethylmethylenedioxy)-4-methylhexanoate (38). A suspension of α,β-unsaturated ester 37 (265 mg, 1.03 mmol) and Pd/C (10%, 34 mg) in EtOH (15 ml) was stirred vigorously under 1 atm pressure of hydrogen at rt for 1 day. The reaction mixture was filtered, and the filtrate was concentrated to give a residure which was then purified by silica gel flash chromatography (AcOEt/hexane, 1: 20) to give the ester 38 (251 mg, 0.97 mmol; 94%) as a colorless oil. [α]²⁴_D-5.93 ° (c 2.64, CHCl₃); IR (neat) 2973, 2938, 2881, 1736, 1464, 1258, 1178, 1079 cm $^{-1}$; 1 H-NMR (400 MHz, CDCl $_{3}$) δ 4.13 (q, J = 7.2 Hz, 2H), 4.01 (dd, J = 7.7, 6.0 Hz, 1H), 3.81 (ddd, J = 8.5, 8.0, 6.0 Hz, 1H), 3.53 (dd, J = 8.5, 7.7 Hz, 1H), 2.43 (ddd, J = 12.9, 9.6, 6.0 Hz, 1H), 2.35 (ddd, J = 15.9, 9.2, 6.5 Hz, 1H), 1.96 (m, 1H), 1.62 (q, J = 7.5 Hz, 2H), 1.60 (q, J = 7.5 Hz, 2H), 1.70-1.46 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H), 0.88 (t, J = 7.5 Hz, 3H), 0.84 (t, J = 6.8 Hz, 3H); EI-MS m/z 259 (M $^{+}$ +H), 229 (M $^{+}$ -Et), 213 (M $^{+}$ -OEt); Anal. Calcd for C $_{14}$ H $_{26}$ O $_{4}$: C, 65.09; H, 10.14. Found: C, 64.83; H, 10.43. Dimethyl [(5R, 6R)-6, 7-(diethylmethylenedioxy)-5-methyl-2-oxoheptyl] phosphonate (26). To a solution of dimethyl methylphosphonate (5.0 ml, 46.1 mmol) in THF (150 ml) was added nbutyllithium (1.65 M in hexane, 27.5 ml, 45.4 mmol) at -78 °C. After being stirred for 3 hr at the same temperature, a solution of ester 38 (5.02 g, 19.4 mmol) in THF (20 ml) was added to this solution slowly via cannula at -78 °C. After being stirred for 1 hr at the same temperature, the reaction mixture was poured into saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (MeOH/CH2Cl2, 1:40) to give an almost inseparable mixture of phosphonate 26 and dimethyl methylphosphonate (total 6.45 g) as a yellow oil. A small analytical sample of pure 26 was obtained, and the remainder used in the next step without further purification. $[\alpha]_{D}^{25}$ -9.02 ° (c 1.22, CHCl₃); IR (neat) 2969, 2881, 1716, 1463, 1260, 1177, 1033 cm⁻¹; ¹H-NMR (400) MHz, CDCl₃) δ 4.01 (dd, J = 7.7, 6.0 Hz, 1H), 3.79 (ddd, J = 8.5, 7.9, 6.0 Hz, 1H), 3.79 (d, J = 11.3 Hz, 6H), 3.52 (dd, J = 8.5, 7.7 Hz, 1H), 3.13 (dd, J = 17.4, 13.7 Hz, 1H), 3.08 (d, J = 17.4, 13.8 Hz, 1H), 2.74(ddd, J = 17.8, 8.4, 6.4 Hz, 1H), 2.70 (ddd, J = 17.8, 8.4, 6.6 Hz, 1H), 1.90 (m, 1H), 1.62 (q, J = 7.5 Hz, 2H), 1.62 (m, 1H), 1.60 (q, J = 7.5 Hz, 2H), 1.49 (m, 1H), 0.89 (t, J = 7.5 Hz, 3H), 0.88 (t, J = 7.5 Hz, 3H), 0.83 (d, J = 6.9 Hz, 3H); EI-MS m/z 307 (M*-Et), FAB-MS m/z 337 (M*+H), 307 (M*-Et), 251 (M*-Et, CO: base peak), 151 ((MeO), P(O)CH, CO); FAB-HRMS Calcd for $C_{15}H_{30}O_6P$ (M++H): 337.1780. Found: 337.1770. (*R*)-3-(4-Methoxybenzyl)oxy-2-methylpropanal (40). To a solution of oxalyl cholide (0.56 ml, 6.42 mmol) in CH₂Cl₂ (15 ml) at -78 °C, DMSO (0.98 ml, 13.8 mmol) was added dropwise. After being stirred for 30 min at the same temperature, a solution of (*S*)-3-(4-methoxybenzyl)oxy-2-methyl-1-propanol 39 (1.190 g, 5.66 mmol) in CH₂Cl₂ (5 ml) was slowly added via cannula at -78 °C. After being stirred for 30 min at the same temperature, triethylamine (4.0 ml, 28.7 mmol) was added, and the reaction mixture was then allowed to warm to 0 °C over 1 hr. The whole reaction mixture was poured into saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:9) to give the aldehyde 40 (1.14 mg, 5.49 mmol; 97%) as a yellow oil. IR (neat) 2935, 2858, 2837, 1723, 1613, 1514, 1463, 1302, 1248, 1174, 1095 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 9.71 (d, J = 1.6 Hz, 1H), 7.24 (m, 2H), 6.88 (m, 2H), 4.46 (d, J = 15.2 Hz, 1H), 4.45 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H), 3.65 (dd, J = 9.3, 6.8 Hz, 1H), 3.61 (dd, J = 9.3, 5.3 Hz, 1H), 2.65 (dddq, J = 7.2, 6.8, 5.3, 1.6 Hz, 1H), 1.12 (d, J = 7.2 Hz, 3H); EI-MS m/z 208 (M⁺), 137 (OPMB), 121 (PMB). (2R, 3S, 4R)-N-Methoxy-5-(4-methoxybenzyl)oxy-N,2,4-trimethyl-3-(triethylsilyl)oxy**pentanamide** (43). To a solution of (R)-(-)-4-isopropyl-3-propionyl-2-oxazolidinone 20 (0.6 ml, 3.54) mmol) in CH₂Cl₂ (15 ml) were added n-Bu₂BOTf (1.0 M in CH₂Cl₂, 3.9 ml, 3.90 mmol) and triethylamine (0.6 ml, 4.30 mmol) at 0 °C. After being stirred for 1 hr at the same temperature, the reaction mixture was cooled to -78 °C and to this mixture was added aldehyde 40 (575 mg, 2.76 mmol) in CH₂Cl₂ (5 ml). After being stirred for 3 hr at -78 °C, the whole reaction mixture was gradually warmed to 0 °C, stirred for an additional 2 hr at the same temperature, and then quenched with pH 7 phosphate buffer (4 ml) in MeOH (20 ml). After 5 min, 30% H,O,/MeOH (1:1, 8 ml) was also added. The quenched solution was stirred for 1 hr at 0 °C, and concentrated below 30 °C. The resulting mixture was extracted three times with AcOEt. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 3:7) to give a mixture of the alcohol 41 and its diastereomer (1.03 g, 2.60 mmol; 94%) as a colorless oil. To a suspension of N,O-dimethylhydroxylamine hydrochloride (1.55 g, 15.9 mmol) in THF (10 ml) was added trimethylaluminium (0.99 M in hexane, 16.0 ml, 15.8 mmol) dropwise at 0 °C. After being stirred for 1 h at rt, to this suspension was added the mixture of the diastereomers (1.03 g, 2.60 mmol) in THF (5 ml) at -20 °C, and the whole mixture was then stirred for 12 hr at rt. The reaction mixture was added to a vigorously stirred mixture of 0.5 N aqueous NaHSO₄ (100 ml) and CH₂Cl₂ (70 ml) via cannula at 0 °C. The organic layer was separated, and washed with saturated aqueous NaHCO, and brine, dried (Na,SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 2:3) to give a mixture of the amide 42, its diastereomer and oxazolidinone (1.02 g) as a colorless oil. To a solution of the mixture (1.02 g) in DMF (15 ml) were added imidazole (488 mg, 7.16 mmol) and chlorotriethylsilane (0.9 ml, 5.36 mmol) at rt. After being stirred for 15 hr, the reaction mixture was quenched with water. The organic layer was separated, and washed with 0.5 N aqueous NaHSO₄, saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 1: 9) to give the TES ether 43 (855 mg, 1.95 mmol; 75% (2 steps)) as a colorless oil, and also its diastereomer (106 mg, 0.24 mmol). The ratio of diastereoselectivity in the aldol reaction was thus 89:11. $[\alpha]^{25}$ _D +2.95 ° (c 1.18, CHCl₂); IR (neat) 2957, 2910, 2876, 1660, 1514, 1460, 1248, 1113, 1087, 1052 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.26 (m, 2H), 6.87 (m, 2H), 4.41 (s, 2H), 4.04 (dd, J = 8.9, 2.0 Hz, 1H), 3.80 (s, 3H), 3.66 (s, 3H), 3.40 (dd, J = 9.1, 6.5 Hz, 1H), 3.23 (dd, J = 9.1, 7.8 Hz, 1H), 3.15 (s, 3H), 3.07 (br m, 1H), 1.85 (m, 1H), 1.16 (d, J = 6.8 Hz, 3H), 0.95 (m, 9H), 0.89 (d, J = 6.9 Hz, 3H), 0.67-0.55 (m, 6H); EI-MS m/z 439 (M⁺), 410 (M⁺-Et), 121 (PMB); Anal. Calcd for $C_{23}H_{44}NO_5Si: C$, 62.83; H, 9.40, N, 3.19. Found: C, 62.79; H, 9.43, N, 3.23. (2R,3S,4R)-5-(4-Methoxybenzyl)oxy-2,4-dimethyl-3-(triethylsilyl)oxypentanal (25). To a solution of the amide 43 (831 mg, 1.89 mmol) in THF (20 ml) was added dissobutylaluminium hydride (0.93 M in hexane, 5.1 ml, 4.72 mmol) dropwise at -78 °C. After being stirred for 80 min at the same temperature, the reaction mixture was added to a vigorously stirred mixture of 0.1 N aqueous potassium sodium tartrate and Et_2O via cannula at 0 °C, and the quenched solution was stirred for 30 min. The organic layer was separated, and the aqueous layer was extracted three times with Et_2O . The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:12) to give the aldehyde **25** (712 mg, 1.87 mmol; 99%) as a colorless oil. IR (neat) 2955, 2910, 2876, 1722, 1514, 1248, 1091, 1036, 1010 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 9.81 (d, J = 1.1 Hz, 1H), 7.24 (m, 2H), 6.88 (m, 2H), 4.42 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 4.22 (dd, J = 5.1, 4.2 Hz, 1H), 3.81 (s, 3H), 3.37 (dd, J = 9.1, 7.1 Hz, 1H), 3.24 (dd, J = 9.1, 5.8 Hz, 1H), 2.53 (ddq, J = 6.9, 5.1, 1.1 Hz, 1H), 1.92 (dddq, J = 7.1, 7.0, 5.8, 4.2 Hz, 1H), 1.06 (d, J = 6.9 Hz, 3H), 0.95 (t, J = 7.9 Hz, 9H), 0.87 (d, J = 7.0 Hz, 3H), 0.59 (q, J = 7.9 Hz, 6H); EI-MS m/z 323 (M*-CH(Me)CHO), 121 (PMB: base peak); Anal. Calcd for $C_{21}H_{36}O_4Si$: C, 66.27; H, 9.53. Found: C, 66.21; H, 9.56. (2R, 3R, 9S, 10R, 11R)-1,2-(Diethylmethylenedioxy)-12-(4-methoxybenzyl)oxy-3,9,11trimethyl-10-(triethylsilyl)oxy-7-dodecen-6-one (44ab). To a solution of phosphonate 26 (1.03 g, 3.07 mmol) in CH₂CN (25 ml) were added litium chloride (128 mg, 3.01 mmol), N₂N-diisopropylethylamine (0.31 ml, 1.78 mmol), and aldehyde 25 in CH₂CN (5 ml) via cannula at rt. After being stirred for 36 hr, the reaction mixture was quenched with water and CH₂Cl₂. The organic layer was separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 1: 10 to CH₂Cl₂/MeOH, 1: 40) to give the enone **44ab** (1.02 g, 1.73 mmol; 97%, E: Z = 93: 1 (¹H-NMR analysis)) as a colorless oil and the recovered phosphonate 26 (0.45 g, 1.35 mmol). (E-olefin) $[\alpha]^{24}_{D}$ -10.7 ° (c 1.26, CHCl₂); IR (neat) 2961, 2877, 1514, 1461, 1248, 1173, 1081, 1057, 1039, 1010 cm⁻¹; ¹H-NMR (400 MHz, $CDCl_3$) δ 7.24 (m, 2H), 6.88 (m, 2H), 6.84 (dd, J = 16.1, 7.9 Hz, 1H), 6.07 (dd, J = 16.1, 1.1 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.38 (d, J = 11.5 Hz, 1H), 4.00 (dd, J = 7.6, 6.1 Hz, 1H), 3.814 (ddd, J = 1.0 3.8148.6, 7.6, 6.1 Hz, 1H), 3.808 (s, 3H), 3.79 (dd, J = 6.8, 2.6 Hz, 1H), 3.53 (dd, J = 8.6, 7.6 Hz, 1H), 3.33 (dd, J = 9.0, 7.8 Hz, 1H), 3.19 (dd, J = 9.0, 6.1 Hz, 1H), 2.65 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H), 2.59 (ddd, J = 16.3, 9.4, 6.3 Hz, 1H),J = 16.3, 9.0, 6.4 Hz, 1H, 2.49 (dddq, J = 7.9, 6.8, 6.8, 1.1 Hz, 1H), 1.95-1.80 (m, 2H), 1.68-1.43 (m, 2H)6H), 1.06 (d, J = 6.8 Hz, 3H), 0.95 (m, 9H), 0.89 (t, J = 7.5 Hz, 3H), 0.88 (t, J = 7.5 Hz, 3H), 0.83 (d, J = 7.5 Hz, 3H), 0.85 (m, 9H), 0.89 (t, J = 7.5 Hz, 3H), 0.88 3 6.8 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H), 0.59 (m, 6H); EI-MS m/z 590 (M⁺), 561 (M⁺-Et), 504 (M⁺-Et,O), 121 (PMB: base peak); Anal. Calcd for C₃₄H₅₈O₆Si: C, 69.11; H, 9.89. Found: C, 69.16; H, 10.02. (2*R*, 3*R*, 9*S*, 10*R*, 11*R*)-1,2-(Diethylmethylenedioxy)-12-(4-methoxybenzyl)oxy-3,9,11-trimethyl-10-(triethylsilyl)oxy-6-dodecanone (45). A suspension of enone 44ab (301 mg, 0.510 mmol) and a catalytic amount of Raney nickel (W2) in AcOEt (10 ml) was stirred vigorously under 1 atm pressure of hydrogen at rt for 1 hr. The reaction mixture was filtered, and the filtrate was concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 15) to give the ketone 45 (302 g, 0.510 mmol; 100%) as a colorless oil. $[α]^{21}_{D}$ -8.15 ° (*c* 1.02, CHCl₃); IR (neat) 2960, 1716, 1613, 1514, 1463, 1248, 1172, 1081 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.25 (m, 2H), 6.87 (m, 2H), 4.42 (d, *J* = 11.4 Hz, 1H), 4.38 (d, *J* = 11.4 Hz, 1H), 4.00 (dd, *J* = 7.7, 6.1 Hz, 1H), 3.80 (s, 3H), 3.79 (ddd, *J* = 8.4, 7.9, 6.1 Hz, 1H), 3.59 (dd, *J* = 8.9, 6.3 Hz, 1H), 3.51 (dd, *J* = 8.4, 7.7 Hz, 1H), 3.35 (dd, *J* = 8.9, 6.9 Hz, 1H), 3.20 (dd, *J* = 8.9, 6.3 Hz, 1H), 2.57-2.26 (m, 4H), 1.94 (dddq, *J* = 6.9, 6.8, 6.3, 3.6 Hz, 1H), 1.86 (m, 1H), 1.72 (m, 1H), 1.65-1.40 (m, 7H), 1.33 (m, 1H), 0.95 (m, 9H), 0.89 (t, *J* = 7.5 Hz, 3H), 0.881 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.879 (t, *J* = 7,5 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.85 (d, *J* = 6. EI-MS m/z 563 (M*-Et), 323 (PMBOCH₂CH(Me)CHOTES), 121 (PMB : base peak); Anal. Calcd for $C_{14}H_{60}O_6Si:C$, 68.87; H, 10.20. Found: C, 68.59; H, 10.27. [2R, 3R, 6R, 8R,8 (1R), 9S]-[3,9-Dimethyl-8-[[1-methyl-2-(4-methoxybenzyl)oxy]ethyl]-1,7-dioxaspiro[5.5]undecan-2-yl]methanol (29). To a solution of ketone 45 (302 mg, 0.510 mmol) in MeOH (20 ml) was added a catalytic amount of *d*-camphor-10-sulfonic acid at rt. After being stirred for 20 hr, the reaction mixture was neutralized with triethylamine (ca. 1 ml), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 5) to give the alcohol 29 (197 mg, 0.501 mmol; 98%) as a colorless oil. $[\alpha]_{D}^{22}$ -52.6 ° (*c* 1.03, CHCl₃); IR (neat) 3478, 2930, 2872, 1613,1514, 1248, 1114, 1091, 1040, 1007 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.24 (m, 2H), 6.88 (m, 2H), 4.44 (d, J = 11.8 Hz, 1H), 4.39 (d, J = 11.8 Hz, 1H), 3.81 (s, 3H), 3.74 (ddd, J = 11.2, 7.2, 2.7 Hz, 1H), 3.54 (ddd, J = 11.2, 6.2, 4.8 Hz, 1H), 3.44 (dd, J = 10.0, 2.3 Hz, 1H), 3.37 (dd, J = 9.4, 4.5 Hz, 1H), 3.35 (ddd, J = 10.2, 6.2, 2.7 Hz, 1H), 3.21 (dd, J = 9.4, 6.7 Hz, 1H), 2.08 (dd, J = 7.2, 4.8 Hz, 1H), 2.00 (m, 1H), 1.87 (dddq, J = 10.0, 6.7, 6.6, 4.5 Hz, 1H), 1.75-1.56 (m, 3H), 1.55-1.34 (m, 6H), 1.10 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 6.4 Hz, 3H); EI-MS m/z 392 (M⁺), 271 (M⁺-PMB), 121 (PMB : base peak); Anal. Calcd for $C_{23}H_{14}O_5$: C, 70.38; H, 9.24. Found : C, 70.16; H, 9.21. [2R, 3R, 6R, 8R,8(1R),9S]-[3,9-Dimethyl-8-[[1-methyl-2-(4-methoxybenzyl)oxy]ethyl]-1,7-dioxaspiro[5.5]undecan-2-yl]carbaldehyde (46). To a solution of oxalyl chloride (50 μ l, 573 μ mol) in CH₂Cl₂ (10 ml) was added DMSO (90 μ l, 1.27 mmol) dropwise at -78 °C. After being stirred for 30 min at the same temperature, a solution of alcohol 29 (197 mg, 501 μ mol) in CH₂Cl₂ (3 ml) was slowly added via cannula. After being stirred for 30 min at the same temperature, triethylamine (0.37 ml, 2.65 mmol) was added. The mixture was then allowed to warm to 0 °C over 1 hr, and then poured into saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 15) to give the aldehyde 46 (191 mg, 488 μ mol; 97%) as a colorless oil. IR (neat) 2957, 2932, 1738, 1513, 1248, 1011 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 2.3 Hz, 1H), 7.23 (m, 2H), 6.88 (m, 2H), 4.43 (d, J = 11.7 Hz, 1H), 4.39 (d, J = 11.7 Hz, 1H), 3.81 (s, 3H), 3.63 (dd, J = 10.0, 2.2 Hz, 1H), 3.43 (dd, J = 10.0, 2.2 Hz, 1H), 3.35 (dd, J = 9.3, 4.2 Hz, 1H), 3.22 (dd, J = 9.3, 6.4 Hz, 1H), 2.05 (m, 1H), 1.85 (dddq, J = 10.0, 6.7, 6.4, 4.2 Hz, 1H), 1.77-1.35 (m, 9H), 1.09 (d, J = 6.7 Hz, 3H), 0.94 (d, J = 5.9 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H); EI-MS m/z 390 (M⁺), 361 (M⁺-CHO), 269 (M⁺-PMB), 121 (PMB): base peak). [2R,2(3S),3R,6R,8R,8(1R),9S]-3,9-Dimethyl-2-[3-(2-methyl-1,3-dithian-2-yl)-1-butenyl]-8-[[1-methyl-2-(4-methoxybenzyl)oxy]ethyl]-1,7-dioxaspiro[5.5]undecane (47ab). To a solution of sulfone 27 (246.7 mg, 0.78 mmol) in THF (5.5 ml) and HMPA (145 μ l, 0.83 mmol) was added n-BuLi 460 μ l (1.69 M in hexane, 460 μ l, 0.78 mmol) dropwise at -78 °C. After being gradually warmed to 0 °C, the mixture was stirred for 30 min, and then recooled to -78 °C and treated with aldehyde 46 (153.5 mg, 393 μ mol) in THF (2 ml) added slowly via cannula. After being stirred for 40 min at the same temperature, and then for an additional 25 min at 0 °C, the whole reaction mixture was poured into saturated 13392 S. Shimizu et al. aqueous NH,Cl, and the quenched mixture was extracted with AcOEt. The organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried (Na,SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:6 to 1:2) to give the β -hydroxysulfone as a mixture of four diastereomers. To a solution of this β hydroxysulfone in CH₂Cl₂ (10 ml) were added pyridine (0.45 ml, 5.56 mmol), acetic anhydride (0.45 ml, 4.77 mmol) and a catalytic amount of 4-dimethylaminopyridine at rt. After being stirred for 14 hr, the reaction mixture was quenched with 6 N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na,SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:15 to 1:2) to give the β -acetoxysulfone as a mixture of four diastereomers. To a solution of β -acetoxysulfone in THF (4.5 ml) and MeOH (1.5 ml) were added Na, HPO₄ (700 mg) and sodium-mercury amalgam (5 %, 5 g, 10.9 mmol) at -20 °C. After being stirred for 1 hr at the same temperature, the reaction mixture was poured into saturated aqueous NH₄Cl and Et₂O, and filtered through a pad of celite. The organic layer was separated, and the aqueous layer was extracted with Et,O. The combined organic layers were washed with brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:15 to 1:5) to give 47ab (155 mg, 283 μmol; 72% (3 steps)) as a colorless oil. (E-olefin) $[\alpha]^{22}_{D}$ -67.8 ° (c 1.01, CHCl₁); IR (neat) 2935, 1613, 1514, 1454, 1422, 1377, 1302, 1248, 1172, 1087 cm⁻¹; ¹H-NMR (400 MHz, CDCl₂) δ 7.24 (m, 2H), 6.87 (m, 2H), 5.68 (dd, J = 15.2, 8.7Hz, 1H), 5.49 (dd, J = 15.2, 8.2 Hz, 1H), 4.45 (d, J = 11.8 Hz, 1H), 4.39 (d, J = 11.8 Hz, 1H), 3.80 (s, 3H), 3.65 (dd, J = 10.0, 8.2 Hz, 1H), 3.47 (dd, J = 10.0, 1.8 Hz, 1H), 3.40 (dd, J = 9.2, 4.1 Hz, 1H), 3.23(dd, J = 9.2, 6.9 Hz, 1H), 2.97-2.78 (m, 4H), 2.77 (dq, J = 8.7, 7.0 Hz, 1H), 2.08-1.82 (m, 4H), 1.57 (s, 3H), 1.74-1.29 (m, 9H), 1.21 (d, J = 6.9 Hz, 3H), 1.14 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H), 0.82 (d, J = 6.5 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 159.0, 133.9, 131.8, 130.8, 128.9, 113.7, 96.0, 76.6, 73.0, 72.6, 72.0, 55.2, 52.9, 45.2, 35.9, 35.6, 34.7, 30.0, 28.1, 27.9, 26.6, 26.3, 25.3, 24.0, 18.1, 15.9, 15.5, 11.2; EI-MS m/z 548 (M⁺), 133 (2-methyl-1,3-dithiane), 121 (PMB: base peak); EI-HRMS calcd for $C_{11}H_{48}O_4S_2$ (M⁺): 548.2994; found : 548.3015. [2R,2(3S),3R,6R,8R,8(1R),9S]-3,9-Dimethyl-2-[3-(2-methyl-1,3-dithian-2-yl)butyl]-8-[[1-methyl-2-(4-methoxybenzyl)oxy]ethyl]-1,7-dioxaspiro[5.5]undecane (49). A solution of 47ab (110 mg, 200 μ mol) and tris(triphenylphosphine)rhodium(I) chloride (39.1 mg, 43 μ mol) in benzene (2 ml) was degassed, and stirred vigorously under 1 atm pressure of hydrogen at rt for 22 hr. The reaction mixture was directly purified by silica gel flash chromatography (AcOEt/hexane, 1:15) to give 49 (107 mg, 194 μ mol; 91%) as a colorless oil. [α]²²_D-55.4 ° (c 0.99, CHCl₃); IR (neat) 2930, 2873, 1513, 1248, 1091 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.25 (m, 2H), 6.87 (m, 2H), 4.45 (d, J = 11.9 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.81 (s, 3H), 3.50 (dd, J = 10.3, 2.2 Hz, 1H), 3.39 (dd, J = 9.3, 4.2 Hz, 1H), 3.24 (m, 1H), 3.22 (dd, J = 9.3, 7.3 Hz, 1H), 2.90-2.72 (m, 4H), 2.10-1.93 (m, 4H), 1.92-1.81 (m, 2H), 1.56 (s, 3H), 1.73-1.24 (m, 14H), 1.11 (d, J = 6.6 Hz, 3H), 1.10 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H), 0.83 (d, J = 6.6 Hz, 3H); EI-MS m/z 550 (M⁺), 133 (2-methyl-1,3-dithiane), 121 (PMB); Anal. Calcd for C₃₁H₅₀O₄S₂: C, 67.59; H, 9.15. Found: C, 67.29; H, 9.06. **[2R,2[2R,3S,6R,8S,8(3S),9R]]-2-[3,9-Dimethyl-8-[3-(2-methyl-1,3-dithian-2-yl)-butyl]-1,7-dioxaspiro[5.5]undecane-2-yl]-1-propanol** (**50**). To a solution of PMB ether **49** (275 mg, 500 μmol) in CH₂Cl₂ (18 ml) and water (1 ml) was added DDQ (95%, 184 mg, 768 μmol) at rt. After being stirred for 1 hr, the reaction mixture was filtered through a pad of celite, and the filtrate was washed with saturated aqueous NaHCO₃. The organic layer was separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 7) to give the alcohol **50** (208 mg, 482 μmol; 97%) as a colorless oil. [α]²²_D-85.8 ° (c 0.99, CHCl₃); IR (neat) 3451, 2923, 1454, 1382, 1275, 1254, 1230, 1094, 1022 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 3.66 (dd, J = 10.0, 2.2 Hz, 1H), 3.63-3.55 (m, 2H), 3.23 (m, 1H), 2.99-2.89 (m, 2H), 2.82-2.74 (m, 2H), 2.16-1.97 (m, 4H), 1.94-1.71 (m, 3H), 1.64 (s, 3H), 1.70-1.22 (m, 11H), 1.13 (d, J = 6.8 Hz, 3H), 1.10 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 6.5 Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 95.8, 74.0, 72.2, 64.9, 55.1, 41.7, 37.4, 36.0, 35.1, 31.3, 30.3, 28.3, 28.0, 27.3, 26.8, 26.3, 25.6, 23.3, 18.0, 14.4, 13.9, 11.3; EI-MS m/z 430, (M*), 371 (M*-HOCH₂CHCH₃), 133 (2-methyl-1,3-dithiane); EI-HRMS Calcd for C₂₃H₄₂O₃S₂ (M*): 430.2576; Found: 430.2549. [2S,2[2R,3S,6R,8S,8(3S),9R]]-2-[3,9-Dimethyl-8-[3-(2-methyl-1,3-dithian-2-yl)-butyl]-1,7-dioxaspiro[5.5]undecane-2-yl]-1-propanal (6). To a solution of alcohol 50 (17.8 mg, 41.3 µmol) in DMSO (2 ml) were added triethylamine (70 µl, 502 µmol) and sulfur trioxide pyridine complex (35.4 mg, 222 µmol) at rt. After being stirred for 2 hr, the reaction mixture was quenched with 0.1 N aqueous NaHSO₄ and diluted with Et₂O. The organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:15) to give the aldehyde 6 (17.7 mg, 41.3 µmol; 100%) as a colorless oil. [α]²⁵_D-7.7 ° (c 1.62, CHCl₃); IR (neat) 2931, 2875, 1724, 1456, 1382, 1231, 1096 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 9.69 (d, J = 3.5 Hz, 1H), 3.99 (dd, J = 10.0, 2.3 Hz, 1H), 3.21 (m, 1H), 2.97-2.87 (m, 2H), 2.82-2.74 (m, 2H), 2.55 (ddq, J = 10.0, 6.8, 3.5 Hz, 1H), 2.18-1.97 (m, 4H), 1.86 (m, 1H), 1.63 (s, 3H), 1.76-1.25 (m, 12H), 1.21 (d, J = 6.8 Hz, 3H), 1.11 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.6 Hz, 3H); El-MS m/z 428, (M⁺), 371 (M⁺-OCHCHCH₃), 133 (2-methyl-1,3-dithiane: base peak). [2R,2[2R,3S,6R,8S,8(3S),9R],6R,7S,9R,10S,11R]-9-Benzyloxy-2-[3,9-dimethyl-8-[3-(2-methyl-1,3-dithian-2-yl)butyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-3,11-dihydroxy-10-methoxy-7-(4-methoxybenzyl)oxy-6,12-dimethyl-5-tridecanone (51ab). To a solution of LDA (4.34 mmol) in THF (25 ml) was added methylketone 5 (1.066 g, 2.12 mmol) in THF (5 ml) at -78 °C. After being stirred for 1 hr at the same temperature, to this solution was added aldehyde 6 (1.066 g, 2.12 mmol) in THF (5 ml) slowly via cannula at -78 °C. After being stirred for 1 hr at the same temperature, the reaction mixture was poured into saturated aqueous NH₄Cl and CH₂Cl₂ at 0 °C. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:9 to 1:5) to give the β -hydroxyketone 51ab (1.274 g, 1.41 mmol; 82%) as a colorless oil. IR (neat) : 3498, 2931, 1706, 1612, 1513, 1455, 1422, 1380, 1302, 1249 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.31-7.16 (m, 7H), 6.80 (m, 2H), 4.58-4.36 (m, 4H), 4.16-4.01(m, 2H), 3.83 (m, 1H), 3.75 (s, 3H), 3.80-3.61(m, 2H), 3.47 (m, 1H), 3.30 (s, 3H), 3.18-3.09 (m, 2H), 3.06-2.60 (m, 7H), 2.35-2.21(m, 1H), 2.10-1.20 (m, 21H), 1.56 (s, 1.2H), 1.49 (s, 1.8H), 1.09 (d, J = 6.6 Hz, 1.8H), 1.05 (d, J = 6.6 Hz, 1.8H), 1.08-1.02 (m, 2.4H), 0.92-0.77 (m, 15H); FAB-MS m/z 923 (M*+Na), 901 (M*+H), 121 (PMB: base peak); FAB-HRMS Calcd for $C_{51}H_{80}O_9S_2Na$ (M*+Na) : 923.5141 Found : 923.5131; Anal. Calcd for $C_{51}H_{80}O_9S_2$: C, 67.96; H, 8.95. Found: C, 68.07; H, 9.03. [2R, 2[2R, 3S, 6R, 8S, 8(3S), 9R], 3E, 6R, 7S, 9R, 10S, 11R]-11-Acetoxy-9-benzyloxy-2-[3,9-dimethyl-8-[3-(2-methyl-1,3-dithian-2-yl)butyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-10methoxy-7-(4-methoxybenzyl)oxy-6,12-dimethyl-3-tridecen-5-one (53). To a solution of β hydroxyketone **51ab** (1.274 g, 1.41 mmol) in CH₂Cl₃ (50 ml) was added 4-dimethyaminopyridine (3.45 g, 28.2 mmol) and acetic anhydride (1.73 ml, 18.3 mmol) at 0 °C. After being stirred for 12 hr at rt, the reaction mixture was quenched with saturated aqueous NaHCO₁. The organic layer was separated, and the aqueous layer was extracted twice with CH₁Cl₂. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:7 to 1:5) to give a mixture of β -acetoxyketone 52ab and enone 53 as a colorless oil. To a solution of the mixture in CH₂Cl₂ (45 ml) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (0.39 ml, 2.61 mmol) at 0 °C. After being stirred for 1 hr at the same temperature, and then for an additional 1 hr at rt, the reaction mixture was quenched with saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na,SO₁), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:7) to give the enone 53 (1.274 g, 1.38 mmol; 98% (2 steps)) as a colorless oil. β -acetoxyketone 52ab: IR (neat): 2932, 1735, 1612, 1586, 1515, 1302 cm⁻¹; ¹H-NMR (400 MHz, CDCl₂) δ 7.36-7.20 (m, 7H), 6.85 (m, 2H), 5.45 (m, 0.6H), 5.28 (m, 0.4H), 5.14-5.09 (m, 1H), 4.57-4.40 (m, 4H), 3.80 (s, 3H), 3.75 (m, 1H), 3.65 (m, 1H), 3.43 (s, 3H), 3.41-3.34 (m, 2H), 3.29 (m, 0.4H), 3.16 (m, 0.6H), 3.05-2.92 (m, 1H), 2.85-2.73 (m, 5H), 2.65 (m, 0.6H), 2.32 (m, 0.4H), 2.00 (s, 1.2H), 1.95 (s, 1.2H), 1.91 (s, 1.8H), 1.90 (s, 1.8H), 1.55 (s, 1.2H), 1.53 (s, 1.8H), 2.12-1.24 (m, 21H), 1.14-1.08 (m, 7.2H), 1.02-0.88 (m, 10.8H), 0.86 (d, J = 6.8Hz, 1.8H), 0.84 (d, J = 6.7Hz, 1.2H); 13 C-NMR (100.4 MHz, CDCl₃) δ 209.8, 209.5, 170.5, 170.3, 169.8, 159.1, 138.3, 130.3, 129.3, 129.0, 128.2, 128.1, 128.0, 127.54, 127.46, 113.7, 95.6, 79.8, 79.6, 77.2, 75.5, 75.4, 74.8, 74.7, 72.7, 72.5, 72.1, 71.8, 71.3, 71.0, 69.4, 65.8, 59.6, 55.3, 54.8, 54.6, 49.9, 49.5, 44.5, 36.1, 36.0, 35.0, 34.9, 32.9, 32.2, 30.1, 28.52, 28.48, 28.2, 28.1, 27.6, 27.5, 26.7, 26.3, 26.1, 25.4, 23.2, 23.1, 21,0. 20.2, 18.1, 16.6, 15.2, 14.7, 14.3, 12.7, 12.0, 11.3, 11.0, 10.8; EI-MS m/z: 925(M*-OAc), 133 (2-methyl-1,3-dithiane: base peak), 121(PMB), 43(Ac); Anal. Calcd for C₅₅H₉₄O₁₁S₂: C₁ 67.04; H, 8.59. Found: C, 67.25; H, 8.87. enone 53 (*E*-olefin): $[\alpha]_{p}^{23}$ 37.9 ° (*c* 0.74, CHCl₃); IR (neat): 2931, 1738, 1693, 1665, 1626, 1586, 1513, 1302cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.35-7.18 (m, 7H), 6.86-6.71 (m, 3H), 6.22 (d, J = 15.7Hz, 1H), 5.11 (dd, J = 7.5, 3.9Hz, 1H), 4.49 (m, 2H), 4.44 (m, 2H), 3.81 (m, 1H), 3.79 (s, 3H), 3.64 (dt, J = 6.5, 2.8Hz, 1H), 3.58 (dd, J = 10.3, 2.2Hz, 1H), 3.44 (s, 3H), 3.38 (dd, J = 7.3, 2.9Hz, 1H), 3.22 (dt, J = 9.7, 2.1Hz, 1H), 3.02-2.84 (m, 3H), 2.82-2.74 (m, 2H), 2.40 (m, 1H), 1.92 (s, 3H), 1.64 (s, 3H), 2.17-1.25 (m, 20H), 1.18 (d, <math>J = 7.0Hz, 3H), 1.13 (d, J = 6.6Hz, 3H), 1.10 (d, J = 7.0Hz, 3H), 0.94-0.89 (m, 6H), 0.85 (d, J = 7.0Hz, 3H), 0.84 (d, J = 6.6Hz, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 202.0, 170.3, 159.1, 149.0, 138.4, 130.5, 129.1, 129.0, 128.2, 128.1, 127.5, 113.7, 95.9, 79.8, 77.3, 75.5, 74.2, 73.6, 72.0,71.7, 59.7, 55.3, 54.9, 48.5, 42.0, 40.1, 35.9, 34.8, 33.5, 31.4, 30.2, 28.9, 28.5, 28.2, 27.1, 26.6, 26.3, 25.6, 23.5, 20.9, 20.2, 18.0, 17.6, 16.6, 14.0, 12.8, 10.7; EI-MS m/z: 925 (M*+H), 133 (2-methyl-1,3-dithiane, base peak), 121 (PMB), 43 (Ac); Anal. Calcd for $C_{53}H_{80}O_9S_2$: C, 68.80; H, 8.71. Found: C, 68.69; H, 8.71. [2R, 2[2S, 3S, 6R, 8S, 8(3S), 9R], 5S, 6S, 7S, 9R, 10S, 11R]-11-Acetoxy-9-benzyloxy-2-[3,9-dimethyl-8-[3-(2-methyl-1,3-dithian-2-yl)butyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-10methoxy-7-(4-methoxybenzyl)oxy-6,12-dimethyl-5-tridecanol (55). A solution of tellurium (324 mg, 2.53 mmol) and sodium borohydride (217 mg, 5.80 mmol) in EtOH (3 ml) was refluxed for 30 min and then cooled to -20 °C. To this purple solution was added a mixed solution of degassed acetic acid and EtOH (1.2:5, 2.9 ml), and then enone 53 (350 mg, 0.377 mmol) in EtOH (2 ml) at the same temperature. After being stirred for 4 hr at rt, the reaction mixture was diluted with Et₂O and hexane, neutralized with triethylamine, and filtered through a pad of celite. The filtrate was concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:9) to give ketone 54 as a colorless oil. To a solution of ketone in THF (9 ml) was added L-Selectride[®] (1.0 M in THF, 1.32 ml, 1.32 mmol) at -80 °C. After being stirred for 24 hr at the same temperature, the reaction mixture was gradually warmed to -30 °C, and then quenched with saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated to give a residue. To a solution of this residue in hexane was added ethanolamine (200 µl, 3.31 mmol) at 0 °C. After being stirred for 10 min at rt, the mixture was purified by silica gel flash chromatography (AcOEt/hexane, 1:9 to 1:6) to give a mixture of the alcohol 55 and its C_{18} epimer (317 mg, 0.341 mmol; 91% (2 steps)) as a colorless oil. ketone 54: $[\alpha]_{D}^{23}$ -22.8 ° (c 0.90, CHCl₁); IR (neat) : 2932, 1739, 1711, 1613, 1586, 1456, 1372, 1302 cm⁻¹; ¹H-NMR (400 MHz, CDCl₁) δ 7.35-7.14 (m, 7H), 6.85 (d, J = 8.1 Hz, 2H), 5.11 (dd, J = 7.3, 3.7 Hz, 1H), 4.51 (d, J = 5.2 Hz, 2H), 4.44 (m, 2H), 3.80 (s, 3H), 3.79 (m, 1H), 3.66 (m, 1H), 3.44 (s, 3H), 3.39 (dd, J = 7.3, 2.9 Hz, 1H), 3.33 (dd, J = 9.9, 1.8 Hz, 1H), 3.20 (m, 1H), 2.91-2.73 (m, 5H), 2.50-2.32 (m, 2H), 1.94 (s, 3H), 1.59 (s, 3H), 2.17-1.24 (m, 23H), 1.13 (d, J = 6.6 Hz, 3H), 1.09 Hz), 1.09 (d, J = 6.6 Hz), 1.09 (d, J = 6.6 Hz), 1.09 (d, J = 6.6 Hz), J = 66.6 Hz, 3H), 0.94-0.87 (m, 12H), 0.83 (d, J = 6.6 Hz, 3H); FAB-HRMS Calcd for $C_{33}H_{82}O_6S_2Na$ (M+Na): 949.5298 Found: 949.5371. the mixture of alcohol 55 and its epimer: ¹H-NMR (400 MHz, CDCl₃) δ 7.35-7.19 (m, 7H), 6.86-6.83 (m, 2H), 5.12 (dd, J = 7.3, 4.4 Hz, 0.7H), 5.07 (dd, J = 7.3, 4.0 Hz, 0.3H), 4.70-4.20 (m, 4H), 3.80 (s, 3H), 3.80-3.70 (m, 1.3H), 3.65-3.20 (m, 5.7H), 3.44 (s, 0.9H), 3.42 (s, 2.1H), 2.86-2.72 (m, 4H), 1.99 (s, 0.9H), 1.98 (s, 2.1H), 1.58 (s, 2.1H), 1.56 (s, 0.9H), 2.18-1.20 (m, 26H), 1.10 (d, J = 6.6 Hz, 3H), 1.06-0.81 (m, 18H); FAB-MS m/z 929 (M*+H), 121 (PMB: base peak), 43 (Ac); FAB-HRMS Calcd for $C_{53}H_{85}O_{9}S_{2}$ (M⁺+H): 929.5635 Found: 929.5654. [2R,2[2S,3S,6R,8S,8(3S),9R],5S,6S,7S,9R,10S,11R]-11-Acetoxy-9-benzyloxy-2-[3,9-dimethyl-8-[3-(2-methyl-1,3-dithian-2-yl)butyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-10-methoxy-7-(4-methoxybenzyl)oxy-6,12-dimethyl-5-(triethylsilyl)oxytridecane (56). To a solution of a mixture of alcohol 55 and its epimer (174.6 mg, 188 μ mol) in CH₂Cl₂ (12 ml) were added disopropylethylamine (980 µl, 5.63 mmol) and triethylsilyl trifluoromethanesulfonate (650 µl, 2.83 mmol) at -40 °C. After being stirred for 40 min at the same temperature, the reaction mixture was quenched with 1 N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/benzene, 1: 30) to give the TES ether 56 (119.8 mg, 115 μ mol) and its C₁₈ epimer (55.1 mg, 53 μ mol) (89%) as a colorless oil. $[\alpha]_{D}^{12}$ -17.6 ° (c 0.89, CHCl₃); IR (neat) : 2931, 1740, 1514, 1457, 1374, 1243 cm⁻¹; ¹H-NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.37-7.23 \text{ (m, 7H)}, 6.86 \text{ (d, } J = 8.0 \text{ Hz}, \text{ 2H)}, 5.13 \text{ (dd, } J = 6.8, 4.0 \text{ Hz}, 1\text{H)}, 4.52-4.37$ (m, 4H), 3.79 (s, 3H), 3.80-3.70 (m, 2H), 3.58 (m, 1H), 3.44 (s, 3H), 3.41 (m, 1H), 3.33 (m, 1H), 3.23 (m, 1H), 2.84-2.71 (m, 4H), 1.93 (s, 3H), 1.57 (s, 3H), 2.14-1.23 (m, 26H), 1.10 (d, <math>J = 6.4 Hz, 3H), 0.93(t, J = 8.0 Hz, 9H), 1.01-0.83 (m, 18H), 0.57 (q, J = 8.0 Hz, 6H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 170.3, 158.9, 138.6, 131.3, 128.8, 128.2, 127.9, 127.4, 113.7, 95.6, 80.3, 76.5, 76.1, 75.6, 75.0, 74.5, 74.1, 72.4, 70.7, 55.3, 54.8, 42.7, 41.8, 36.2, 35.3, 34.9, 33.4, 32.1, 30.9, 30.3, 28.6, 28.3, 27.7, 27.6, 26.8, 26.5, 26.3, 26.2, 25.5, 23.4, 21.0, 20.1, 18.1, 17.0, 16.7, 14.5, 11.0, 9.3, 7.2, 5.4; FAB-MS m/z 1043 (M⁺+H), 133 (2-methoxy-1,3-dithiane: base peak), 43 (acetyl); FAB-HRMS Calcd for C₅₀H₉₀O₆SiS, (M⁺+H): 1043.6500 Found: 1043.6473. [3S, 5[2S, 3R, 6R, 8S, 8(1R, 4S, 5S, 6S, 8R, 9S, 10R), 9S]]-5-[8-[10-Acetoxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzyloxy-8-benzylo9-methoxy-6-(4-methoxybenzyl)oxy-1,5,11-trimethyl-4-(triethylsilyl)oxy-dodecanyl]-3,9dimethyl-1,7-dioxaspiro[5.5]undecan-2-vl]-3-methyl-2-pentanone (57). To a mixed solution of N-bromosuccinimide (58.6 mg, 0.33 mmol), silver nitrate (360.3 mg, 0.357 mmol) and 2,4,6-collidine (82 μl, 0.613 mmol) in CH₂CN and H₂O (4: 1, 2 ml) was added dithiane 56 (55,1 mg, 52.8 μ mol) at 0 °C. After being stirred for 10 min at the same tempurature, the reaction mixture was diluted with Et,O and quenched with 10% aqueous Na₂S₂O₃. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed twice with saturated aqueous KHSO₄, then with saturated aqueous NaHCO₁, saturated aqueous NH₄Cl and brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:10) to give the ketone 57 (40.6 mg, 42.6 μ mol; 81%) as a colorless oil. [α]²⁸_p +1.4 ° (c 0.70, CHCl₃); IR (neat) : 2956, 1738, 1713, 1514, 1462, 1372, 1244 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.37-7.22 (m, 7H), 6.85 (d, J = 8.1 Hz, 2H), 5.12 (dd, J = 4.2, 7.1 Hz, 1H), 4.60-4.37 (m, 4H), 3.80 (s, 3H), 3.74 (m, 1H), 3.69 (m, 1H), 3.58 (m, 1H), 3.44 (s, 3H), 3.42 (m, 1H), 3.26-3.15 (m, 2H), 2.55 (m, 1H), 2.13 (s, 3H), 1.93 (s, 3H), 2.14-1.19 (m, 23H), 1.08 (d, J = 7.0 Hz, 3H), 0.99-0.87 (m, 24H), 0.81 (d, J = 6.6 Hz, 3H), 0.57 (q, J = 8.1 Hz, 6H); 13 C-NMR (100.4) MHz, CDCl₃) δ 212.8, 170.3, 158.9, 138.6, 131.3, 128.8, 128.2, 127.8, 127.4, 113.7, 95.6, 80.2, 76.5, 76.1, 75.6, 75.3, 74.3, 74.1, 72.4, 70.6, 59.5, 55.3, 47.3, 42.8, 36.1, 35.3, 34.8, 33.3, 30.8, 30.6, 30.2, 29.1, 28.6, 28.1, 27.7, 26.8, 26.6, 21.0, 20.1, 18.0, 16.9, 16.7, 16.1, 10.9, 9.3, 7.1, 5.3; FAB-MS m/z 975 (M⁺+Na), 953 (M⁺+H), 281 (C₁-C₁₄); FAB-HRMS Calcd for $C_{56}H_{93}O_{10}Si$ (M⁺+H): 953.6538 Found: 953.6479. [3S,5[2S,3R,6R,8S,8(1R,4S,5S,6S,8R,9S,10R),9S]]-5-[8-[10-Acetoxy-8-benzyloxy-9-methoxy-6-(4-methoxybenzyl)oxy-1,5,11-trimethyl-4-(triethylsilyl)oxy-dodecanyl]-3,9dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methyl-2-pentanol (58). To a solution of L-Selectride $(1.0 M \text{ in THF}, 33 \mu\text{I}, 33 \mu\text{mol})$ in THF (0.5 ml) was added ketone 57 $(10.7 \text{ mg}, 11.2 \mu\text{mol})$ at -40 °C. After being stirred for 30 min with gradually warming to -30 °C, the reaction mixture was quenched with saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed with a mixed solution of saturated aqueous NaHCO₂ and 30% aqueous H₂O₂, then with 10% aqueous Na₂S₂O₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:10) to give the alcohol 58 (10.7 mg, 11.2 μmol; 100%) as a mixture of epimeric alcohols (colorless oil). IR (neat): 3500, 2957, 1740, 1514, 1455, 1372, 1245 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.37-7.22 (m, 7H), 6.85 (d, J = 8.8 Hz, 2H), 5.12 (dd, J = 7.0, 4.0 Hz, 1H), 4.59-4.36 (m, 4H), 3.79 (s, 3H), 3.75-3.56 (m, 4H), 3.44 (s, 3H), 3.41 (m, 4H)1H), 3.27 (m, 1H), 3.19 (m, 1H), 1.93 (s, 3H), 2.13-1.23 (m, 25H), 1.17-1.10 (m, 3H), 0.99-0.82 (m, 30H), 0.57 (q, J = 8.1 Hz, 6H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 170.4, 158.9, 138.6, 131.3, 128.8, 128.2, 127.9, 127.4, 113.7, 95.7, 80.2, 76.5, 76.0, 75.5, 75.3, 75.2, 74.6, 74.5, 74.1, 72.4, 71.3, 71.2, 70.5, 59.5, 55.3, 42.8, 40.1, 39.9, 36.2, 35.3, 35.0, 34.8, 33.3, 30.7, 30.4, 30.2, 29.7, 28.7, 28.6, 28.13, 28.05, 27.7, 27.6, 26.7, 21.0, 20.4, 20.1, 19.7, 16.8, 16.7, 14.9, 14.2, 10.9, 9.3, 7.1, 5.3; FAB-MS m/z 955 (M^++H) ; FAB-HRMS Calcd for $C_{56}H_{95}O_{10}Si$ (M^++H) : 955.6695 Found: 955.6630. [2R, 2[2S, 3S, 6R, 8S, 8(3S), 9R], 5S, 6S, 7S, 9R, 10S, 11R]-11-Acetoxy-9-benzyloxy-2-[3,9-dimethyl-8-[4-[[(4-methoxybenzyloxy)methyl]oxy-3-methylpentyl]-1,7-dioxaspiro-[5.5]undecan-2-yl]-10-methoxy-7-(4-methoxybenzyl)oxy-6,12-dimethyl-5-(triethylsilyl)oxytridecane (59). To a solution of alcohol 58 (56.7 mg, 59.4 µmol) in CH₂Cl₂ (6 ml) were added diisopropylethylamine (580 μl, 3.33 mmol) and p-methoxybenzyloxymethyl chloride (ca. 1.2 mmol, in CH₂Cl₂ (0.5 ml)) at -20 °C. After being stirred for 20 hr at rt, the reaction mixture was quenched with saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na,SO_a) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt /hexane, 1:14) to give the PMBM ether 59 (59.5 mg, 52.8 µmol; 89%) as a colorless oil. IR (neat): 2931, 1738, 1613, 1586, 1514, 1247 cm⁻¹; ¹H-NMR (400 MHz, $CDCl_3$) δ 7.36-7.22 (m, 9H), 6.87-6.83 (m, 4H), 5.12 (dd, J = 7.3, 4.4Hz, 1H), 4.77-4.70 (m, 2H), 4.59-4.48 (m, 4H), 4.38 (m, 2H), 3.79 (s, 3H), 3.79 (s, 3H), 3.81-3.62 (m, 3H), 3.57 (m, 1H), 3.43 (s, 3H), 3.41 (m, 1H), 3.27 (m, 1H), 3.18 (m, 1H), 2.13-2.00 (m, 4H), 1.92 (s, 3H), 1.90-1.26 (m, 20H), 1.16-1.09 (m, 3H), 0.99-0.86 (m, 27H), 0.82 (d, J = 6.6 Hz, 3H), 0.57 (q, J = 7.7 Hz, 6H); 13 C-NMR (100.4) MHz, CDCl₁) δ 170.3, 159.2, 158.9, 138.6, 131.3, 130.2, 129.5, 129.4, 128.8, 128.2, 127.8, 127.4, 113.8, 113.7, 95.6, 92.9, 92.8, 80.2, 77.2, 76.5, 76.3, 76.1, 75.5, 75.2, 74.5, 74.1, 72.3, 70.6, 69.0, 59.5, 55.2, 42.8, 38.7, 38.0, 36.2, 35.4, 34.8, 33.3, 30.9, 30.6, 30.3, 28.9, 28.6, 28.2, 27.7, 26.7, 26.6, 21.0, 20.1, 18.1, 17.2, 16.9, 16.7, 15.7, 15.3, 14.4, 14.2, 10.9, 9.3, 7.1, 5.3; FAB-MS m/z 1143 (M*+K), 1127 (M⁺+Na); FAB-HRMS Calcd for C₆₅H₁₀₄O₁₂SiNa (M⁺+Na): 1127.7195 Found: 1127.7155. 13398 S. Shimizu et al. [3R, 4S, 5R, 7S, 8S, 9S, 12R, 12[2S, 3S, 6R, 8S, 8(3S), 9R]]-3-Acetoxy-12-[3,9-dimethyl-8-[4-[[(4-methoxybenzyloxy)methyl]oxy-3-methylpentyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-4-methoxy-7-(4-methoxybenzyl)oxy-2,8-dimethyl-9-(triethylsilyl)oxy-5-tridecanol (60). A suspension of TES ether 59 (56.7 mg, 50.3 µmol) and a catalytic amount of Raney Ni (W2) in EtOH (5 ml) was stirred vigorously under 1 atm pressure of hydrogen at rt for 48 hr. To this mixture was further added a catalytic amount of Raney Ni (W2) in EtOH (2 ml). After being stirred under 1 atm pressure of hydrogen for 24 hr, the reaction mixture was filtered through a pad of celite. The filtrate was concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:12 to 1:8) to give alcohol (40.9 mg, 40.3 µmol; 94%) as a colorless oil and also the recovered TES ether 60 (7.2 mg, 7.1 µmol). 80 % (conv. 92%). IR (neat): 2933, 1740, 1613, 1586, 1514, 1248 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 4H), 6.87-6.83 (m, 4H), 5.12 (dd, J = 6.6, 4.8 Hz, 1H), 4.81-4.71 (m, 2H), 4.60-4.42 (m, 4H), 3.794 (s, 3H), 3.786 (s, 3H), 3.80-3.62 (m, 4H), 3.47 (s, 3H), 3.27 (m, 1H), 3.18 (m, 1H), 3.12 (dd, J = 6.7, 2.6 Hz, 1H), 2.84 (m, 1H), 2.10-1.94 (m, 4H), 2.06 (s, 3H), 1.85-1.22 (m, 20H), 1.17-1.11 (m, 3H), 0.99-0.87 (m, 27H), 0.82 (d, J = 6.6 Hz, 3H), 0.59 (q, J = 7.9Hz, 6H); FAB-MS m/z 1037 (M⁺+Na); FAB-HRMS Calcd for $C_{xy}H_{yy}O_{1/2}SiNa$ (M⁺+Na): 1037.6725 Found: 1037.6651. [2R, 2[2S, 3S, 6R, 8S, 8(3S), 9R], 5S, 6S, 7S, 9R, 10S, 11R]-11-Acetoxy-2-[3,9-dimethyl-8-[4-[[(4-methoxybenzyloxy)methyl]oxy-3-methylpentyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-10-methoxy-7-(4-methoxybenzyl)oxy-6,12-dimethyl-5,9-bis[(triethylsilyl)oxy]tridecane (61). To a solution of alcohol 60 (24.7 mg, 24.3 μmol) in CH₂Cl₂ (12 ml) were added diisopropylethylamine (170 μl, 976 µmol) and triethylsilyl trifluoromethanesulfonate (115 µl, 501 µmol) at -40 °C. After being stirred for 30 min with gradually warming to -20 °C, the reaction mixture was quenched with 1 N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:15) to give the TES ether 61 (24.2 mg, 21.4 μmol; 88%) as a colorless oil. IR (neat): 3504, 2955, 1738, 1614, 1514, 1463, 1376, 1247 cm⁻¹; ¹H-NMR (400 MHz, CDCl₁) δ 7.28-7.24 (m, 4H), 6.88-6.84 (m, 4H), 5.06 (dd, J = 7.3, 3.7 Hz, 1H), 4.79-4.71 (m, 2H), 4.59-4.52 (m, 2H), 4.42 (m, 2H), 3.91 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.79 (m, 1H), 3.70-3.63 (m, 2H), 3.42 (s, 3H), 3.32-3.25 (m, 2H), 3.18 (m, 1H), 2.00 (s, 3H), 2.17-1.24 (m, 24H), 1.17-1.09 (m, 3H), 0.99-0.87 (m, 36H), 0.82 (d, J = 6.6 Hz, 3H), 0.63 (q, J = 8.1 Hz, 6H), 0.60 (q, J = 8.1 Hz, 6H); ¹³C-NMR (100.4 MHz, CDCl₂) δ 170.2, 159.2, 158.8, 131.4, 130.2, 129.5, 129.4, 128.6, 113.8, 113.6, 95.6, 93.0, 92.7, 81.7, 77.2, 76.6, 76.3, 75.7, 75.3, 74.5, 74.1, 70.8, 69.5, 69.0, 59.1, 55.3, 42.9, 38.7, 37.9, 36.5, 36.1, 35.5, 34.8, 30.9, 30.6, 30.4, 30.3, 29.7, 28.9, 28.6, 28.2, 27.7, 26.8, 26.7, 26.6, 21.0, 20.1, 18.0, 17.2, 16.9, 16.7, 15.6, 15.3, 14.4, 10.9, 9.2, 9.1, 7.0, 5.3; FAB-MS m/z 1152 (M*+Na); FAB-HRMS Calcd for $C_{64}H_{112}O_{12}Si_2Na$ (M*+Na): 1151.7590 Found : 1151.7481. [3R, 4S, 5R, 7S, 8S, 9S, 12R, 12[2S, 3S, 6R, 8S, 8(3S), 9R]]-12-[3,9-Dimethyl-8-[4-[[(4-methoxybenzyloxy)methyl]oxy-3-methylpentyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-4-methoxy-7-(4-methoxybenzyl)oxy-2,8-dimethyl-5,9-bis[(triethylsilyl)oxy]-3-tridecanol (4). To a solution of ester 61 (3.39 mg, 3.0 μ mol) in CH₂Cl₂ (150 μ l) was added diisobutylaluminium hydride (0.93 M in hexane, 30 μ l, 28 μ mol) dropwise at -78 °C. After being stirred for 30 min at the same temperature, the reaction mixture was added to a vigorously stirred mixed solution of 0.5 N aqueous potassium sodium tartrate and Et₂O via cannula at 0 °C, and the quenched solution was stirred for 2 hr at rt. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by preparative thin layer chromatography (AcOEt/hexane, 1 : 4) to give the alcohol 4 (3.28 mg, 3.0 μ mol; 100%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 7.28-7.22 (m, 4H), 6.88-6.84 (m, 4H), 4.79-4.69 (m, 2H), 4.56-4.38 (m, 4H), 4.14 (m, 1H), 3.80 (s, 3H), 3.80 (s, 3H), 3.74-3.60 (m, 5H), 3.37 (s, 3H), 3.32-3.11 (m, 3H), 2.10-1.22 (m, 24H), 1.17-1.08 (m, 3H), 1.00-0.87 (m, 36H), 0.82 (d, J = 6.3Hz, 3H), 0.66 (q, J = 7.9 Hz, 6H), 0.60 (q, J = 8.0Hz, 6H). This compound was useless for the total synthesis. *N*-Methoxy-*N*, 4-dimethyl-3-furancarboxamide (63). To a solution of carboxylic acid 62 (915 mg, 7.3 mmol) and *N*, *O*-dimethylhydroxylamine hydrochloride (800 mg, 8.2 mmol) in DMF (20 ml) was added a mixture of diethylphosphoryl cyanide (1.3 ml, 8.0 mmol) and triethylamine (2.2 ml, 16.1 mmol) in DMF (5 ml) at 0 °C. After being stirred for 30 min at the same temperature, and then for an additional 30 min at rt, the reaction mixture was diluted with benzene and AcOEt, and then quenched with 5% aqueous HCl. The organic layer was separated, and washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 4) to give the amide 63 (1.20 g, 7.1 mmol; 97%) as a white solid. mp 39 °C (recrystallized from AcOEt-hexane); IR (KBr) 1637, 1534, 1382, 1230, 1140, 1047, 969, 863 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.94 (d, J =1.5 Hz, 1H), 7.21 (m, 1H), 3.66 (s, 3H), 3.32 (s, 3H), 2.21(d, J =1.1 Hz, 3H); ¹³C-NMR (78.8 MHz, CDCl₃) δ 164.2, 146.3, 139.9, 121.9, 118.2, 60.9, 32.7, 9.5; EI-MS m/z 169 (M⁺), 109 (M⁺-N(OMe)Me); EI-HRMS Calcd for C₈H₁₁O₃N (M⁺): 169.0739 Found: 169.0739. Methyl 3-(4-methylfuryl)-3-oxopropionate (64). To a solution of LDA (9.9 mmol) in THF (15 ml) was added methyl acetate (0.79 ml, 9.9 mmol) dropwise at -78 °C. After being stirred for 20 min at the same temperature, to this solution was added amide 63 (1.20 g, 7.1 mmol) in THF (2 ml) slowly via cannula at -78 °C. After being stirred for 2 hr at the same temperature, the reaction mixture was poured into 1 N aqueous HCl and Et₂O at 0 °C. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 15 to 1 : 6) to give the β-keto ester 64 (0.699 g, 3.8 mmol) as a colorless oil and the recovered amide (0.244 mg, 1.4 mmol). 58 % (conv. 73%). IR (neat) 3137, 2956, 1743, 1678, 1534, 1438, 1330, 1148, 1050, 874 cm⁻¹; ¹H-NMR (270 MHz, CDCl₃) δ 8.02 (d, J = 1.5 Hz, 1H), 7.23 (m, 1H), 3.77 (s, 2H), 3.76 (s, 3H), 2.21 (d, J = 1.0 Hz, 3H). ¹³C-NMR (78.8 MHz, CDCl₃) δ 187.2, 167.5, 149.6, 141.6, 125.9, 120.4, 52.3, 47.4, 9.1; EI-MS m/z 182 (M⁺), 109 (M⁺-CH₂COOMe); EI-HRMS Calcd for C₉H₁₀O₄ (M⁺): 182.0579 Found : 182.0579. Methyl (R)-3-hydroxy-3-(4-methylfuryl)propionate (65). Ru-BINAP method: A solution of $[RuCl_2(benzene)]_2$ (5.0 mg) and (S)-BINAP (13.1 mg) in degassed DMF (0.5 ml) was warmed with stirring for 10 min at 100 °C and then pumped dry under reduced pressure (0.1 mmHg) at 50 °C. The residue (as a catalyst) and the β -keto ester 64 (181 mg, 1.0 mmol) were dissolved in degassed MeOH (2 ml) and the resulting mixture further degassed three times. After being stirred under 100 atm of hydrogen for 48 h, the whole reaction mixture was concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:7) to give the alcohol 65 (184 mg, 1.0 mmol; 100%) as a colorless oil in 86% ee. (calculated by peak ratio (${}^{1}H$ -NMR) of MTPA ester). BH_{3} -oxazaborolidine method: To a solution of (S)-(-)-2-methyl-CBS-oxazaborolidine 66 (23.0 mg, 78 μmol) in THF (0.8 ml) was added BH₁•THF (1.0 M in THF, 75 μ l, 75 μ mol) dropwise at rt. To this mixture were added β -keto ester 64 (28.0 mg, 154 μ mol) in THF (0.5 ml) and BH, THF (1.0 M in THF, 150 µl, 150 µmol) at 0 °C. After being stirred for 1 hr at the same temperature, the reaction mixture was diluted with Et₂O and 30% aqueous H₂O₂, and the mixture was stirred for an additional 30 min at room temperature. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed with 10% Na₂S₂O₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:6) to give the alcohol 65 (16.2 mg, 88 µmol; 57%) as a colorless oil and the recovered keto ester (4.0 mg, 22 μmol), conv. 67%. 92% ee. (calculated by peak raio (H-NMR) of MTPA ester and by using analytical chiral phase HPLC (Daicel Chiralcel OD, hexane: 2-PrOH = 9:1)). Purification of the alcohol 65 was further performed by using preparative HPLC (Daicel Chiralcel OD, hexane: 2-PrOH = 9:1), and we used this optically pure 65 for the total synthesis of 1. $[\alpha]^{22}_{D} + 41.9^{\circ}$ (c 0.84, CHCl₃, 100% ee); IR (neat) 3452, 2954, 1733, 1547, 1439, 1360, 1282, 1171, 1049, 876, 803 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.34 (m, 1H), 7.18 (m, 1H), 5.07 (m, 1H), 3.75 (s, 3H), 3.31 (d, J = 4.0 Hz, 1H), 2.7-2.9 (m, 2H), 2.06 (br-d, 3H); ¹³C-NMR (78.8 MHz, CDCl₃) δ 173.2, 140.9, 140.0, 127.4, 119.3, 63.5, 52.4, 41.5, 8.9, EI-MS m/z 184 (M*), 111 (M⁺-CH₂COOMe); EI-HRMS Calcd for C₀H₁,O₄ (M⁺): 184.0736 Found : 184.0728. Methyl (R)-3-(diethylisopropylsilyl)oxy-3-(4-methylfuryl)propionate (67). To a solution of alcohol 65 (13.9 mg, 75.5 μmol) in CH_2Cl_2 (1.3 ml) were added imidazole (13 mg, 191 μmol) and diethylisopropylchlorosilane (21 μl, 113 μmol) at 0 °C. After being stirred for 2 hr, the reaction mixture was quenched with water. The organic layer was separated, and washed with brine, dried (Na_2SO_4) and concentrated to give a residue which was then purified by preparative thin layer silica gel chromatography (AcOEt/hexane, 1:4) to give the DEIPS ether 67 (23.0 mg, 73.7 μmol; 98%) as a colorless oil. 1 H-NMR (400 MHz, CDCl₃) δ 7.27 (m, 1H), 7.12 (m, 1H), 5.16 (dd, J = 8.6, 5.0 Hz, 1H), 3.66 (s, 3H), 2.81 (dd, J = 14.9, 8.6 Hz, 1H), 2.58 (dd, J = 14.9, 5.0 Hz, 1H), 2.06 (d, J = 1.3 Hz, 3H), 1.02-0.84 (m; 13H), 0.65-0.52 (m, 4H). This compound was useless for the total synthesis of 1. Benzyl (R)-3-(diethylisopropylsilyl)oxy-3-(4-methylfuryl)propionate (68). To a solution of 67 (23.0 mg, 74 μmol) in THF/water (5:1, 1.8 ml) was added lithium hydroxide monohydrate (4.6 mg, 110 μmol) at rt. After being stirred for 48 hr, the reaction mixture was quenched with 0.3 N aqueous HCl at 0 °C and diluted with AcOEt. After being stirred for 30 min, the organic layer was separated, and the aqueous layer was extracted twice with AcOEt. The combined organic layers were dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (Et₂O/hexane, 1: 2 to Et₂O only) to give the carboxylic acid (19.0 mg, 64 μmol) as a colorless oil. To a solution of carboxylic acid (19.0 mg, 64 μmol) in THF (2 ml) were added benzyl alcohol (23 μl, 0.22 mmol), 4-dimethylaminopyridine (7.0 mg, 57 μmol), and dicyclohexylcarbodiimide (17.1 mg, 83 μmol) at 0 °C. After being stirred for 5 hr at rt, the reaction mixture was diluted with hexane and filtered through a pad of celite. The filtrate was washed with 0.3N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with AcOEt. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1: 20) to give the benzyl ester (17.8 mg, 45.9 μ mol; 62% (2 steps)) as a colorless oil. [α]²⁸_D +35.7 ° (c 1.09, CHCl₃); IR (neat) 2955, 2876, 1738, 1240, 1166, 1087, 1046 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.37-7.28 (m, 5H), 7.24 (m, 1H), 7.11 (m, 1H), 5.17 (dd, J = 8.6, 5.0 Hz, 1H), 5.09 (m, 2H), 2.86 (dd, J = 14.9, 8.6 Hz, 1H), 2.63 (dd, J = 14.9, 5.0 Hz, 1H), 2.05 (d, J = 1.0 Hz, 3H), 0.96-0.82 (m, 13H), 0.62-0.58 (m, 4H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 170.8, 140.3, 139.9, 135.8, 128.5, 128.25, 128.18, 127.9, 118.5, 66.3, 64.7, 44.5, 17.1, 12.8, 8.7, 6.9, 6.8, 3.6, 3.4. This compound was useless for the total synthesis of 1. (*R*)-2-[2-Benzyloxycarbonyl-1-(diethylisopropylsilyl)oxyethyl]-3-methylmaleic anhydride (69). A solution of furan 68 (118.2 mg, 305 μmol), diisopropylethylamine (110 μl, 631 μmol) and a catalytic amount of rose bengal in CH₂Cl₂ (2.7 ml) was stirred under 1 atm pressure of oxygen with irradiation by a Hg lamp at 0 °C. The reaction mixture was then diluted with Et₂O and passed through a short silica gel flash chromatography column (Et₂O) to give 5-hydroxy-2,5-dihydro-2-furanone as a colorless oil. To a solution of the furanone in CH₂Cl₂ (7 ml) were added MS4A (500 mg) and pyridinium chlorochromate (200 mg, 930 μmol) at rt. After being stirred for 4 hr, the reaction mixture was diluted with Et₂O, and passed through a florisil® column (AcOH/Et₂O, 1 : 100) to give the maleic anhydride 69 (112.2 mg, 268 μmol; 88% (2 steps)) as a colorless oil. [α]²⁶_D+18.9 ° (c 0.43, CHCl₃); IR (neat) : 2956, 2878, 1770, 1738, 1253, 1170, 1101, 1015 cm⁻¹; ¹H-NMR (270 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 5.16-5.08 (m, 3H), 2.89-2.84 (m, 2H), 2.12 (br-s, 3H), 0.99-0.87 (m, 13H), 0.68-0.56 (m, 4H); ¹³C-NMR (67.8 MHz, CDCl₃) δ 169.2, 165.8, 164.3, 143.1, 142.6, 135.3, 128.7, 128.55, 128.51, 66.9, 64.1, 41.4, 17.0, 12.7, 10.0, 6.8, 3.4, 3.3. This compound was useless for the total synthesis of 1. (4Z, 3R)-4-(tert-butoxycarbonyl)-3-(diethylisopropylsilyl)oxy-5-(methoxy-Benzvl carbonyl)-4-hexenoate and Benzyl (4Z,3R)-5-(tert-butoxycarbonyl)-3-(diethylisopropylsilvi) oxy-4-(methoxycarbonyl)-4-hexenoate (70). To a solution of maleic anhydride 69 (5.8 mg, 13.8 μmol) in MeOH (1.0 ml) was added triethylamine (20 μl, 0.16 mmol) at 0 °C. After being stirred for 1 hr at the same temperature, the reaction mixture was quenched with 1 N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with AcOEt. The combined organic layers were washed with brine, dried (Na, SO₄), concentrated to give the half ester. To a solution of the half ester in CH₂Cl₂ (2.0 ml) was added O-t-butyl-N,N-diisopropylisourea 71 (70 μl, 0.27 mmol). After being refluxed 24 hr with stirring, the reaction mixture was filtered through a pad of celite, and the filtrate was concentrated. The residue was diluted with AcOEt, and the organic layer was washed with water, 1 N aqueous HCl and brine, dried (Na, SO₄) and concentrated to give a residue which was then purified by preparative thin layer chromatography (AcOEt/hexane, 1:4) to give the DEIPS deprotected triester (3.95 mg, 10.4 \text{ \text{mol}}; 75\% (2 steps)) as a colorless oil. To a solution of the resulting alcohol (1.37 mg, 3.6 µmol) in CH₂Cl₂ (300 µl) were added imidazole (1.3 mg, 19 μmol) and diethylisopropylchlorosilane (1.7 μl, 9.2 μmol) in CH₂Cl₂ (20 μl) at 0 °C. After being stirred for 2.5 hr, the reaction mixture was quenched with water. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₃. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by preparative thin layer chromatography (AcOEt/hexane, 1:5) to give the DEIPS ether **70** (1.60 mg, 3.15 μ mol; 87%) as a colorless oil. ¹H-NMR (270 MHz, CDCl₃) δ 7.36-7.30 (m, 5H), 5.18-5.12 (m, 3H), 3.73 (s, 2.7H), 3.72 (s, 0.3H), 3.01 (dd, J = 15.7, 8.8 Hz, 0.9H), 2.97 (dd, J = 15.6, 8.1 Hz, 0.1H), 2.77 (dd, J = 15.6, 4.8 Hz, 0.1H), 2.70 (dd, J = 15.7, 4.0 Hz, 0.9H), 1.95 (s, 0.3H), 1.93 (s, 2.7H), 1.50 (s, 0.9H), 1.46 (s, 8.1H), 0.96-0.85 (m, 13H), 0.65-0.54 (m, 4H); ¹³C-NMR (67.8 MHz, CDCl₃) δ 170.8, 167.1, 167.1, 140.6, 135.7, 131.6, 128.5, 128.3, 81.8, 67.6, 66.51, 66.48, 52.08, 51.71, 42.5, 42.3, 28.1, 28.0, 27.9, 17.14, 17.08, 15.0, 12.8, 12.7, 6.9, 6.8, 3.5, 3.35, 3.27. This compound was useless for the total synthesis of **1**. (4Z, 3R)-4-(tert-Butoxycarbonyl)-3-(diethylisopropylsilyl)oxy-5-(methoxycarbonyl)-4-hexenoic acid and (4Z, 3R)-5-(tert-Butoxycarbonyl)-3-(diethylisopropylsilyl)oxy-4-(methoxycarbonyl)-4-hexenoic acid (3). A solution of triester 70 (1.29 mg, 2.54 μmol) and a catalytic amount of 10% Pd/C in MeOH (500 μl) was stirred vigorously under 1 atm pressure of hydrogen at rt for 30 min. The reaction mixture was diluted with CHCl₃, and filtered. The filtrate was concentrated to give the carboxylic acid (0.91 mg, 2.18 μmol; 87%) as a pale yellow oil. ¹H-NMR (270 MHz, CDCl₃) δ 5.12 (m, 1H), 3.74 (s, 2.7H), 3.73 (s, 0.3H), 2.99-2.67 (m, 2H), 1.98 (s, 0.3H), 1.95 (s, 2.7H), 1.50 (s, 0.9H), 1.46 (s, 8.1H), 0.98-0.88 (m, 13H), 0.68-0.56 (m, 4H). This compound was useless for the total synthesis of 1. Methyl (*R*)-3-(*tert*-butyldimethylsilyl)oxy-3-(4-methylfuryl)propionate (77). To a solution of alcohol 65 (52.0 mg, 283 μmol) in CH₂Cl₂ (2.5 ml) was added diisopropylethylamine (180 μl, 1.0 mmol) and *t*-butyldimethylsilyl trifluoromethanesulfonate (120 μl, 522 μmol) at 0 °C. After being stirred for 30 min, the reaction mixture was quenched with 1 *N* aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1 : 12) to give the TBS ether (83.2 mg, 279 μmol; 99%) as a colorless oil. [α]²⁸_D+52.3 ° (*c* 0.65, CHCl₃); IR (neat) : 2929, 2856, 1741, 1087, 1046 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.26 (m, 1H), 7.13 (m, 1H), 5.13 (dd, *J* = 9.2, 4.3 Hz, 1H), 3.68 (s, 3H), 2.80 (dd, *J* = 14.5, 9.2 Hz, 1H), 2.56 (dd, *J* = 14.5, 4.3 Hz, 1H), 2.05 (d, *J* = 1.3 Hz, 3H), 0.84 (s, 9H), 0.03 (s, 3H), -0.09 (s, 3H); ¹³C-NMR (100.4 MHz, CDCl₃) δ 171.5, 140.4, 139.8, 128.8, 127.9, 118.5, 64.9, 51.6, 44.3, 25.6, 18.0, 11.0, -4.8; EI-MS *m/z* 283 (M⁺-CH₃); EI-HRMS Calcd for C₁₄H₂₃O₄Si (M⁺-CH₃) : 283.1366, Found : 283.1361. (*R*)-3-(*tert*-butyldimethylsilyl)oxy-3-(4-methylfuryl)propionic acid (74). To a solution of TBS ether 77 (6.0 mg, 20 μ mol) in THF/water (5:1, 0.6 ml) was added lithium hydroxide monohydrate (1.3 mg, 30 μ mol) at rt. After being stirred for 48 hr, the reaction mixture was quenched with 0.3 *N* aqueous HCl and diluted with AcOEt at 0 °C. After being stirred for 30 min, the organic layer was separated, and the aqueous layer was extracted twice with AcOEt. The combined organic layers were dried (Na₂SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:2 to Et₂O only) to give the carboxylic acid 74 (5.7 mg, 20 μ mol; 100%) as a colorless oil. [α]²⁸_D+41.5 ° (c 0.96, CHCl₃); IR (neat): 2930, 2858, 1714, 1087 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.28 (m, 1H), 7.14 (m, 1H), 5.12 (dd, J = 8.6, 4.3 Hz, 1H), 2.83 (dd, J = 14.9, 8.6 Hz, 1H), 2.63 (dd, J = 14.9, 4.3 Hz, 1H), 2.05 (d, J = 1.0 Hz, 3H), 0.85 (s, 9H), 0.05 (s, 3H), -0.08 (s, 3H); 13 C-NMR (100.4 MHz, CDCl₃) δ 140.5, 139.9, 127.4, 118.3, 64.7, 43.8, 25.6, 18.0, 8.7, -4.8; EI-MS m/z 269 (M*-Me), 227 (M*-'Bu) EI-HRMS Calcd for $C_{10}H_{15}O_4Si$ (M*-'Bu) : 227.0740, Found : 227.0746. [3R, 4S, 5R, 7S, 8S, 9S, 12R, 12[2S, 3S, 6R, 8S, 8(3S), 9R]]-5,9-Bis-[(tert-butyldimethylsilyl)oxy]-12-[3,9-dimethyl-8-[4-[[(4-methoxybenzyloxy)methyl]oxy-3-methylpentyl]-1,7dioxaspiro[5.5]undecan-2-yl]-4-methoxy-7-(4-methoxybenzyl)oxy-2,8-dimethyl-3-tridecanol (76). To a solution of TES ether 61 (5.55 mg, 4.92 µmol) in THF (0.5 ml) was added hydrogen fluoridepyridine (2 mM in THF; 0.10 ml, 0.20 mmol) at 0 °C. After being stirred for 24 hr at rt, hydrogen fluoridepyridine (2 mM in THF; 0.15 ml, 0.30 mmol) was added to the mixture at 0 °C. After being stirred for an additional 36 hr at rt, the whole reaction mixture was diluted with Et,O and aqueous CuSO4 at 0 °C. The organic layer was separated, and the aqueous layer was extracted with Et,O. The combined organic layers were washed with aqueous CuSO₄ and brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 2:5 to 1:2) to give a mixture of the desired diol 78 and the migration product (ca. 4.3 mg, 4.8 µmol) as a colorless oil. To a solution of the resulting mixture (ca. 4.3 mg, 4.8 µmol) in CH₂Cl₂ (0.7 ml) were added diisopropylethylamine (34 µl, 195 µmol) and tbutyldimethyllsilyl trifluoromethanesulfonate (26 µl, 113 µmol) at -40 °C. After being warmed to -20 °C for 30 min with stirring, the reaction mixture was quenched with 1 N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with CH2Cl2. The combined organic layers were washed with saturated aqueous NaHCO₁, and brine, dried (Na,SO₄), and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:15 to 1:8) to give a mixture of the TBS ether 79 and the migration product (5.28 mg, 4.68 μmol) as a colorless oil. To a solution of the resulting mixture in CH,Cl, (250 µl) was added diisobutylaluminium hydride (0.93 M in hexane, 50 µl, 47 µmol) dropwise at -78 °C. After being stirred for 30 min at the same tempurature, the reaction mixture was added to a vigorously stirred mixture of 0.5 N aqueous potassium sodium tartrate and Et,O via cannula at 0 °C, and the quenched solution was stirred for 2 hr at rt. The organic layer was separated, and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a residue which was then purified by preparative thin layer chromatography (AcOEt/hexane, 1:4) to give the alcohol 76 (4.02 mg, 3.70 µmol; 75% (3 steps)) as a colorless oil. TBS ether 79: IR (neat): 2929, 1738, 1613, 1587, 1514, 1247 cm⁻¹; H-NMR (400 MHz, CDCl₁) δ 7.29-7.22 (m, 4H), 6.88-6.84 (m, 4H), 5.05 (dd, J= 7.0, 3.6 Hz, 1H), 4.80-4.72 (m, 2H), 4.60-4.35 (m, 4H), 3.90 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.73-3.61(m, 2H), 3.55(m, 1H), 3.41(s, 3H), 3.33(dd, J = 7.0, 3.3Hz, 1H), 3.25(m, 1H), 3.18(m, 1H), 2.00(s, 3H), 2.15-1.15 (m, 24H), 1.10-1.07 (m, 3H), 1.00-0.84 (m, 18H), 0.91 (s, 9H), 0.89 (s, 9H), 0.82 (d, J = 6.2Hz, 3H), 0.09 (s, 6H), 0.04 (s, 6H). alcohol 76: IR (neat): 3505, 2930, 1612, 1514, 1248 cm⁻¹; H-NMR (400 MHz, CDCl₁) δ 7.28-7.22 (m, 4H), 6.88-6.83 (m, 4H), 4.80-4.70 (m, 2H), 4.60-4.36 (m, 4H), 4.11 (m, 1H), 3.79 (s, 3H), 3.79 (s, 3H), 3.74-3.58 (m, 5H), 3.36 (s, 3H), 3.29-3.12 (m, 3H), 2.10-1.24 (m, 24H), 1.17-1.10 (m, 3H), 1.00-0.86 (m, 18H), 0.91 (s, 9H), 0.89 (s, 9H), 0.81 (d, <math>J = 6.2Hz, 3H), 0.91 (s, 9H), 0.81 (d, 10H), 0.91 (s, 9H), 0.81 (d, 10H), 0.91 (s, 9H), 9H),0.16 (s, 3H), 0.14 (s, 3H), 0.04 (s, 6H); FAB-MS m/z 1109 (M+Na); FAB-HRMS Calcd for $C_{62}H_{110}O_{11}Si_2Na$ (M+Na): 1109.7482, Found: 1109.7400. [3R, 4S, 5R, 7S, 8S, 9S, 12R, 12[2S, 3S, 6R, 8S, 8(3S), 9R]]-5,9-Bis[(tert-butyldimethylsilyl)oxy]-12-[3,9-dimethyl-8-[4-[[(4-methoxybenzyloxy)methyl]oxy-3-methylpentyl]-1,7dioxaspiro[5.5]undecan-2-yl]-4-methoxy-7-(4-methoxy-benzyl)oxyhydroxy-2,8-dimethyltridecan-3-yl (3R)-3-(tert-butyldimethylsilyl)oxy-3-(4-methyl-3-furyl)propionate (75). To a solution of carboxylic acid 74 (12.39 mg, 43.6 μmol) in toluene (150 μl) were added triethylamine (0.588 mM in toluene, 100 μl, 58.8 μmol) and 2,4,6-trichlorobenzoyl chloride (0.523 mM in toluene, 100 μl, 52.3 μmol) at 0 °C. After stirring for 2 hr at rt, to this mixture were added alcohol 76 (10.43 mg, 9.6 µmol) and DMAP (21.0 mg, 172 μmol) at 50 °C. After being stirred for 12 hr at the same temperature, the reaction mixture was quenched with 1 N aqueous HCl. The organic layer was separated, and the aqueous layer was extracted twice with Et,O. The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by silica gel flash chromatography (AcOEt/hexane, 1:24) to give the ester 75 (9.28 mg, 6.8 µmol) as a pale yellow oil and also the recovered alcohol 76 (1.98 mg, 0.18 µmol). 72% (conv. 88%). IR (neat) 2930, 2857, 1738, 1614, 1587, 1514, 1463, 1249 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.29-7.20 (m, 5H), 7.09 (m, 1H), 6.88-6.81 (m, 4H), 5.14 (dd, J = 8.8, 3.7 Hz, 1H, 5.04 (dd, J = 5.9, 3.7 Hz, 1H), 4.80-4.72 (m, 2H), 4.59-4.41 (m, 2H), 4.44-4.32 (m, 2H)2H), 3.85 (m, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.72-3.64 (m, 2H), 3.52 (m, 1H), 3.37 (s, 3H), 3.30 (dd, J =5.9, 4.4 Hz, 1H), 3.25 (m, 1H), 3.18 (m, 1H), 2.79 (dd, J = 16.1, 8.8Hz, 1H), 2.49 (dd, J = 16.1, 3.7 Hz, 1H), 2.00 (m, 3H), 2.12-1.22 (m, 24H), 1.17-1.09 (m, 3H), 0.97-0.80 (m, 21H), 0.881 (s, 9H), 0.877 (s, 9H), 0.82 (s, 9H), 0.061 (s, 3H), 0.057 (s, 3H), 0.033 (s, 3H), 0.028 (s, 3H), 0.026 (s, 3H), -0.10 (s, 3H); FAB-HRMS Calcd for $C_{76}H_{132}O_{14}Si_3Na_1$ (M⁺+Na): 1375.8826, Found: 1375.8781. [3R, 4S, 5R, 7S, 8S, 9S, 12R, 12[2S, 3S, 6R, 8S, 8(3S), 9R]]-5,9-Bis[(tert-butyldimethylsilyl)oxy]-12-[3,9-dimethyl-8-[4-[4-hydroxy-3-methylpentyl]-1,7-dioxaspiro-[5.5]undecan-2-yl]-7-hydroxy-4-methoxy-2,8-dimethyltridecan-3-yl (3R)-3-(tert-butyl-dimethylsilyl)oxy-3-(4-methyl-3-furyl)propionate (80). To a solution of PMB ether 75 (14.1 mg, 10.4 µmol) in CH₂Cl₂ (700 µl) and phosphate buffer (pH7) (70 µl) was added DDQ (9.4 mg, 41.4 µmol) at 0 °C. After being stirred for 30 min at rt, this mixture was twice treated with additional DDQ (2.4 mg, 10.6 μmol) at 30 min intervals. After being stirred for an additional 30 min, the reaction mixture was quenched with a mixture of saturated aqueous NaHCO₃ and CH₂Cl₂ at 0 °C. The quenched mixture was filtered through a pad of celite, and the organic layer of the filtrate was separated. The aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na,SO₄) and concentrated to give a residue which was then purified by preparative thin layer chromatography (AcOEt/hexane, 1:4) to give the diol 80 (8.6 mg, 7.9 µmol; 76%) as a colorless oil and the mono-ol deprotected only at C₂₀ (1.3 mg, 1.0 µmol; 10 %). IR (neat) 3411, 2930, 1742, 1463, 1374, 1247 cm⁻¹; ¹H-NMR (400 MHz, CDCl₁) δ 7.26 (m, 1H), 7.11 (m, 1H), 5.16 (dd, J = 8.3, 4.3 Hz, 1H, 5.02 (dd, J = 5.5, 4.3 Hz, 1H), 4.11 (m, 1H), 3.99 (m, 1H), 3.72-3.59 (m, 2H), 3.38 (s, 3H), 3.42-3.13 (m, 3H), 2.82 (dd, J = 15.8, 8.3 Hz, 1H), 2.59 (dd, J = 15.8, 4.3 Hz, 1H), 2.35 (m, 1H), $2.05 ext{ (d. } J = 0.9 ext{ Hz, 3H)}, 2.14-1.20 ext{ (m. 24H)}, 1.17-1.12 ext{ (m. 3H)}, 1.00 ext{ (d. } J = 6.3 ext{ Hz, 3H)}, 0.95-0.81 ext{ (m. 3H)}, 1.00 (m.$ 21H), 0.89 (s, 9H), 0.88 (s, 9H), 0.83 (s, 9H), 0.09-0.07 (m, 12H), 0.04 (s, 3H), -0.09 (s, 3H); FAB-MS m/z 1105 (M⁺+Na); FAB-HRMS Calcd for $C_{sq}H_{114}O_{11}Si_{3}Na_{1}$ (M⁺+Na): 1105.7567, Found: 1105.7592. [3R, 4S, 5R, 8S, 9S, 12R, 12[2S, 3S, 6R, 8S, 8(3S), 9R]]-5,9-Bis[(tert-butyldimethyl-silyl)oxy]-12-[3,9-dimethyl-8-[4-[3-methylpentyl-4-oxo]-1,7-dioxaspiro-[5.5]undecan-2-yl]-4-methoxy-2,8-dimethyl-7-oxotridecan-3-yl (3R)-3-(tert-butyldimethylsilyl)oxy-3-(4-methyl-3-furyl)propionate (81). To a solution of the diol 80 (13.1 mg, 12.1 μ mol), NMO (8.8 mg, 75 μ mol) and MS4A in CH₃CN (1.3 ml) was added TPAP (6.6 mg, 19 μ mol) at 0 °C. After being stirred for 1 hr at rt, the reaction mixture was diluted with CH₂Cl₂, then passed through a short column flash of silica gel (CH₂Cl₂) to give the diketone 81 (11.3 mg, 10.5 μ mol; 87%) as a colorless oil. [α]²⁶_D+22.1 ° (c 0.24, CHCl₃); IR (neat) 2929, 1734, 1716, 1462, 1256 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.26 (m, 1H), 7.11 (m, 1H), 5.17 (dd, J = 8.4, 4.4 Hz, 1H), 4.92 (dd, J = 7.2, 3.6 Hz, 1H), 4.47 (m, 1H), 3.98 (m, 1H), 3.35 (s, 3H), 3.26 (m, 1H), 3.22 (dd, J = 7.2, 4.0 Hz, 1H), 3.17 (m, 1H), 2.82 (dd, J = 16.1, 8.4 Hz, 1H), 2.56 (dd, J = 16.1, 4.4 Hz, 1H), 2.75-2.55 (m, 4H), 2.16 (s, 3H), 2.03 (m. 3H), 2.18-1.19 (m, 20H), 1.10 (d, J = 7.0 Hz, 3H), 1.00-0.80 (m, 18H), 0.85 (s, 9H), 0.83 (s, 9H), 0.81 (s, 9H), 0.09 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.02 (s, 3H), -0.02 (s, 3H), -0.09 (s, 3H); FAB-MS m/z 1101 (M⁺+Na); FAB-HRMS Calcd for C₅₉H₁₁₀O₁₁Si₃Na₁ (M⁺+Na): 1101.7254, Found: 1101.7326. Tris-O-(tert-butyldimethylsilyl)tautomycin (82). To a solution of furan 81 (3.3 mg, 3.1 µmol) in THF/pH 7 phosphate buffer (4:1, 0.5 ml) was added NBS (1.1 mg, 6.18 µmol) at 0 °C. After being stirred for 15 min at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO₂ and extracted with hexane/Et₂O (1:1). The organic layer was separated, and the aqueous layer was extracted twice with hexane/Et₂O (1:1). The combined organic layers were washed with saturated aqueous NaHCO₁, water and brine, then dried (Na,SO₄) and concentrated to give the diol as a mixture of four isomers. To this diol in acetone (0.3 ml) was added Jones reagent (48.6 μM in acetone, 82 μ l, 3.99 μ mol) at 0 °C. After being stirred for 15 min at the same temperature, the reaction mixture was quenched with 2-PrOH (2 drops), and then pH 7 phosphate buffer. The quenched solution was extracted with Et,O. The organic layer was separated, and washed with saturated aqueous NaHCO₁, and brine, then dried (Na,SO₄) and concentrated to give to a residue which was then purified by preparative thin layer chromatography (AcOEt/hexane, 1:4) to give the 5-hydroxy-2,5-furanone (2.1 mg, 1.9 \text{ \text{\pmol}}; 62\%) as a mixture of four isomers. To the mixture in CH₂Cl₂ were added MS4A (30 mg) and PCC (0.8 mg, 3.71 µmol). After being stirred for 3 hr, the reaction mixture was twice treated with additional PCC (0.8 mg, 3.71 µmol) at 3 hr intervals. After being stirred for an additional 12 hr, the reaction mixture was diluted with Et,O, and passed through a pad of celite (Et,O) to give a residue which was then purified by preparative thin layer chromatography (AcOEt/hexane/AcOH, 19:80:1) to give the maleic anhydride 82 (0.8 mg, 0.72 μ mol; 38%) as a pale yellow oil. $[\alpha]^{24}_D$ +20.0 ° (c 0.04, CHCl₃); IR (neat): 2955, 2926, 2854, 1772, 1737, 1714, 1462, 1095, 836, 777 cm⁻¹; ¹H-NMR (270 MHz, CDCl₂) δ 5.16 (dd, J = 7.2, 5.7 Hz, 1H), 4.93 (dd, J = 7.3, 3.9 Hz, 1H), 4.46 (m, 1H), 3.97 (m, 1H), 3.36 (s, 3H), 3.28-10.00 (m, 1H), 3.97 (m, 1H), 3.90 3.903.13 (m, 3H), 2.87 (dd, J = 16.4, 7.3 Hz, 1H), 2.75 - 2.65 (m, 4H), 2.57 (m, 1H), 2.22 (s, 3H), 2.15 (s, 3H),2.15-1.95 (m, 2H), 1.89 (m, 1H), 1.79-1.20 (m, 17H), 1.10 (d, J = 7.2 Hz, 3H), 0.99-0.79 (m, 18H), 0.86(s, 9H), 0.85 (s, 9H), 0.82 (s, 9H), 0.12 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H), -0.01 (s, 3H); FAB-MS m/z 1131 (M⁺+Na), 1109 (M⁺+H); FAB-HRMS Calcd for C_{so}H₁₀₀O₁₃Si₃Na (M⁺+Na): 1131.6995, Found: 1131.6976. This compound was converted to 1 using freshly prepared HF•Py according to the literature procedure.7 ### Acknowledgments This study was financially supported by Fellowships of the Japan Society for the Promotion of Science for Japanese Junior Scientists. We are grateful to Professor. M. Ubukata (Toyama Prefectural University) for providing us with a sample of tautomycin, and to Professor. M. Isobe (Nagoya University) for helpful discussions. We also thank Dr. N. Morisaki (University of Tokyo) for providing FAB-Mass spectra of products, and Dr. T. Kusumoto (Sagami Chemical Research Center) for his generous assistance concerning the use of preparative chiral phase HPLC. #### References and Notes - 1. Cheng, X.-C.; Kihara, T.; Kusakabe, H.; Magae, J.; Kobayashi, Y.; Fang, R.-P.; Ni, Z.-F.; Shen, Y.-C.; Ko, K.; Yamaguchi, I.; Isono, K. J. Antibiot. 1987, 40, 907. - 2. Magae, J.; Watanabe, C.; Osada, H.; Cheng, X.-C.; Isono, K. J. Antibiot. 1988, 41, 932. - (a) Magae, J.; Osada, H.; Fujiki, H.; Saido, T. C.; Suzuki, K.; Nagai, K.; Yamasaki, M.; Isono, K. Proc. Japan Acad. Ser. B 1990, 66, 209, (b) MacKintosh, C.; Klumpp, S. FEBS Lett. 1990, 277, 137, (c) Hori, M.; Magae, J.; Han, Y.-G.; Hatshorne, D. J.; Karaki, H. FEBS Lett. 1991, 285, 145, (d) Magae, J.; Hino, A.; Isono, K.; Nagai, K. J. Antibiot. 1992, 45, 246, (e) Kurisaki, T.; Magae, J.; Isono, K.; Nagai, K.; Yamasaki, M. Antibiot. 1992, 45, 252. - (a) Ubukata, M.; Cheng, X.-C.; Isono, K. J. Chem. Soc., Chem. Commun. 1990, 244, (b) Cheng, X.-C.; Ubukata, M.; Isono, K. J. Antibiot. 1990, 43, 809, (c) Ubukata, M.; Cheng, X.-C.; Isobe, M.; Isono, K. J. Chem. Soc., Perkin Trans. 1, 1993, 617. - 5. The synthetic approach of the C₁-C₂₆ fragment of (+)-tautomycin (1): Maurer, K. W.; Armstrong, R. W. J. Org. Chem. 1996, 61. 3106, - 6. (a) Oikawa, H.; Oikawa, M.; Ueno, T.; Ichihara, A. Tetrahedron Lett. 1994, 35, 4809, (b) Oikawa, M.; Ueno, T.; Oikawa, H.; Ichihara, A. J. Org. Chem. 1995, 60. 5048, and references therein. - 7. Ichikawa, Y.; Tsuboi, K.; Jiang, Y.; Naganawa, A.; Isobe, M. Tetrahedron Lett. 1995, 36, 7101, and references therein. - 8. Nakamura, S.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 4145. - 9. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021. - The applications of 7 to the synthesis of N-methyl-mayserin (a) Corey, E. J.; Weigel, L. O.; Chamberlin, A. R.; Lipshutz, B. J. Am. Chem. Soc. 1980, 102, 1439, of compactin (b) Rosen, T.; Taschner, M. J.; Heathcock, C. H. J. Org. Chem. 1984, 49, 3994, (c) Keck, G. E.; Kachensky, D. F. J. Org. Chem. 1986, 51, 2487. - 11. Nagashima, N.; Ohno, M. Chem. Pharm. Bull. 1991, 39, 1972. - 12. Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. - 13. Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978, 2417. - 14. Suda, M. Synthesis 1981, 714. - 15. (a) Corey, E. J.; Erickson, B. W. J. Org. Chem. 1971, 36, 3553, (b) Gröbel, B.-T.; Seebach, D. Synthesis 1977, 357. - (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127, (b) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 83. - 17. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141. - 18. (a) Yamada, S.; Kasai, Y.; Shioiri, T. Tetrahedron Lett. 1973, 1595, (b) Shioiri, T; Yokoyama, Y; Kasai, Y; Yamada, S. Tetrahedron 1976, 32, 2211. - 19. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815. - 20. (a) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 4833, (b) Kocienski, P. Phosphorus Sulfur 1985, 24, 97. - 21. Kirby, A. J. "The Anomeric Effect and Related Stereoelectronic Effects at Oxygen", Springer Verlag, Berlin (1983). - 22. Levin, J. I.; Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12, 989. - 23. A small amount of epimerization at C₃ was observed in 27 prior to its recrystallization (as determined by ¹H- and ¹³C-NMR analyses of the compound 49 prepared using non-recrystallized 27 in a 4-step sequence of reactions). However, the use of recrystallized 27 gave 49 as a single diastereomer. - 24. (a) Nicolaou, K. C.; Papahatjis, D. P.; Claremon, D. A.; Dolle, R. E., III. J. Am. Chem. Soc. 1981, 103, 6967, (b) Nakada, M. J. Synth. Org. Chem. Japan. 1995, 53, 122. - 25. As 26 was obtained in impure form, an accurate yield could not be determined (see text). The reaction, however, appeared to be clean by TLC analysis, suggesting that the yield is acceptable.. - (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5976, (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. - (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293, (b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919. - 28. Walkup, R. D.; Boatman, P. D., Jr.; Kane, R. R.; Cunningham, R. T. Tetrahedron Lett. 1991, 32, 3937. - 29. Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506. - 30. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W.R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183. - 31. (a) Vollhardt, H; Gais, H, -J.; Lukas, K. L. Angew. Chem. Int. Ed. Engl. 1985, 24,610, (b) Boche, G. Angew. Chem. Int. Ed. Engl. 1989, 28, 277. - 32. Yamashita, M.; Kato, Y.; Suemitsu, R. Chem Lett. 1980, 847. - 33. (a) Fujita, E.; Nagao, Y.; Kaneko, K. Chem. Pharm. Bull. 1978, 26, 3743, (b) Lipshutz, B. R.; Moretti, R.; Crow, R. Tetrahedron Lett. 1989, 30, 15. - 34. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287. - 35. Kozikowski, A. P.; Wu, J. -P. Tetrahedron Lett. 1987, 28, 5125. - 36. Pelletier, S. W.; Djarmati, Z.; Lajsic, S. D.; Micovic, I. V.; Yang, D. T. C. Tetrahedron 1975, 31, 1659. - 37. Turner, J. A.; Jacks, W. S. J. Org. Chem. 1989, 54, 4229. - 38. (a) Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. *J. Am. Chem. Soc.* 1987, 109, 5856, (b) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. *Tetrahedron Lett.* 1991, 32, 4163, (c) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. *Org. Synth.* 1992, 71, 1. - 39. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. - 40. Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. -P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925, and references therein. - 41. Toshima, K.; Tatsuta, K.; Kinoshita, M. Tetrahedron Lett. 1986, 27, 4741. - 42. Feringa, B. L. Recl. Trav. Chim. Pays-Bas 1987, 106, 469. - S. SHIMIZU et al. - 43. Mathias, L. J. Synthesis 1979, 561. - 44. Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394. - 45. (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989, (b) Hikota, M.; Tone, H; Horita, K.; Yonemitsu, O. J. Org. Chem. 1990, 55, 7. - 46. Diago-Meseguer, J.; Palomo-Coll, A. L.; Fernandez-Lizarbe, J. R.; Zugaza-Bilbao, A. Synthesis, 1980, 547. - 47. Fujisawa, T.; Mori, T.; Fukumoto, K.; Sato, T. Chem Lett. 1982, 1891. - 48. Georgiadis, M. P.; Couladouros, E. A. J. Org. Chem. 1986, 51, 2725. (Received in Japan 22 July 1996; accepted 30 August 1996)